SVM支持向量机(上)

举报
毛利 发表于 2021/07/15 08:33:13 2021/07/15
【摘要】 参考https://baike.baidu.com/item/%E6%94%AF%E6%8C%81%E5%90%91%E9%87%8F%E6%9C%BA/9683835?fromtitle=SVM&fromid=4385807&fr=aladdin 什么是svm 支持向量机(Support Vector Machine, SVM)是一类按监督学习(s...

参考https://baike.baidu.com/item/%E6%94%AF%E6%8C%81%E5%90%91%E9%87%8F%E6%9C%BA/9683835?fromtitle=SVM&fromid=4385807&fr=aladdin

什么是svm

支持向量机(Support Vector Machine, SVM)是一类按监督学习(supervised learning)方式对数据进行二元分类(binary classification)的广义线性分类器(generalized linear classifier),其决策边界是对学习样本求解的最大边距超平面(maximum-margin hyperplane)
在这里插入图片描述
重点:

scikit-learn对svm的实现都在sklearn.svm中
其中svc用于分类,svr用于回归,也就是说svm既可以做分类页可以做回归

概念:

线性可分支持向量机

  • 硬间隔最大化hard margin maximization n
  • 硬间隔支持向量机 o

线性支持向量机

  • 软间隔最大化soft margin maximization
  • 软间隔支持向量机

非线性

文章来源: maoli.blog.csdn.net,作者:刘润森!,版权归原作者所有,如需转载,请联系作者。

原文链接:maoli.blog.csdn.net/article/details/89022562

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。