聚类(中)层次聚类 基于密度的聚类算法
【摘要】 简单用k-mean处理iris 数据集
import pandas as pd
from sklearn.cluster import KMeans
from sklearn.metrics import homogeneity_score, completeness_score, v_measure_score
data = pd.read_csv('iris.d...
简单用k-mean处理iris 数据集
import pandas as pd
from sklearn.cluster import KMeans
from sklearn.metrics import homogeneity_score, completeness_score, v_measure_score
data = pd.read_csv('iris.data', header=None, names=['花萼长度', '花萼宽度', '花瓣长度', '花瓣宽度', '类别'])
x = data[['花萼长度', '花萼宽度', '花瓣长度', '花瓣宽度']]
model = KMeans(n_clusters=3, init='k-means++')
model.fit(x)
y_pred = model.predict(x)
print('homogeneity_score = ', homogeneity_score(data['类别'], y_pred))
print('completeness_score = ', completeness_score(data['类别'], y_pred))
print('v_measure_score = ', v_measure_score(data['类别'], y_pred))
data['Predict'] = y_pred
print(data)
data.to_csv('result.csv', sep=',', encoding='gbk', index=False)
print('Data Save OK....')
OUT:
homogeneity_sc
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
文章来源: maoli.blog.csdn.net,作者:刘润森!,版权归原作者所有,如需转载,请联系作者。
原文链接:maoli.blog.csdn.net/article/details/89068224
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)