EM算法和GMM(上)

举报
毛利 发表于 2021/07/15 07:06:46 2021/07/15
【摘要】 EM算法,指的是最大期望算法(Expectation Maximization Algorithm,期望最大化算法),是一种迭代算法,在统计学中被用于寻找,依赖于不可观察的隐性变量的概率模型中,参数的最大似然估计。基本思想是首先随机取一个值去初始化待估计的参数值,然后不断迭代寻找更优的参数使得其似然函数比原来的似然函数大。 EM算法当做最大似然估计的拓展,解决难以给出...

EM算法,指的是最大期望算法(Expectation Maximization Algorithm,期望最大化算法),是一种迭代算法,在统计学中被用于寻找,依赖于不可观察的隐性变量的概率模型中,参数的最大似然估计。基本思想是首先随机取一个值去初始化待估计的参数值,然后不断迭代寻找更优的参数使得其似然函数比原来的似然函数大。

EM算法当做最大似然估计的拓展,解决难以给出解析解(模型中存在隐变量)的最大似然估计(MLE)问题
在这里插入图片描述
在这里插入图片描述

文章来源: maoli.blog.csdn.net,作者:刘润森!,版权归原作者所有,如需转载,请联系作者。

原文链接:maoli.blog.csdn.net/article/details/89216162

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。