隐马尔科夫模型 概念(上)

举报
毛利 发表于 2021/07/15 06:57:03 2021/07/15
【摘要】 隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔可夫过程。 隐马尔可夫模型(HMM)可以用五个元素来描述,包括2个状态集合和3个概率矩阵: 隐含状态 S 这些状态之间满足马尔可夫性质,是马尔可夫模型中实际所隐含的状态。这些状态通常无法通过直接观测而得到。(例如S1、S2、S3等等) 可观测状态 O...

隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔可夫过程。

隐马尔可夫模型(HMM)可以用五个元素来描述,包括2个状态集合和3个概率矩阵:

  1. 隐含状态 S
    这些状态之间满足马尔可夫性质,是马尔可夫模型中实际所隐含的状态。这些状态通常无法通过直接观测而得到。(例如S1、S2、S3等等)
  2. 可观测状态 O
    在模型中与隐含状态相关联,可通过直接观测而得到。(例如O1、O2、O3等等,可观测状态的数目不一定要和隐含状态的数目一致。)
  3. 初始状态概率矩阵 π
    表示隐含状态在初始时刻t=1的概率矩阵,(例如t=1时,P(S1)=p1、P(S2)=P2、P(S3)=p3,则初始状态概率矩阵 π=[ p1 p2 p3 ].
  4. 隐含状态转移概率矩阵 A。
    描述了HMM模型中各个状态之间的转移概率。
    其中Aij = P( Sj | Si ),1≤i,j≤N.
    表示在 t 时刻、状态为 Si 的条件下,在 t+1 时刻状态是 Sj 的概率。
  5. 观测状态转移概率矩阵 B (英文名为Confusion Matrix,直译为混淆矩阵不太易于从字面理解)。
    令N代表隐含状态数目,M代表可观测状态数目,则:
    Bij = P( Oi | Sj ), 1≤i≤M,1≤j≤N.
    表示在 t 时刻、隐含状态是 Sj 条件下,观察状态为 Oi 的概率。
    总结:一般的,可以用λ=(A,B,π)三元组来简洁的表示一个隐马尔可夫模型。隐马尔可夫模型实际上是标准马尔可夫模型的扩展,添加

文章来源: maoli.blog.csdn.net,作者:刘润森!,版权归原作者所有,如需转载,请联系作者。

原文链接:maoli.blog.csdn.net/article/details/89218991

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。