pytorch 中 Autograd(四)

举报
毛利 发表于 2021/07/15 09:14:00 2021/07/15
【摘要】 用Tensor训练网络很方便,但是反向传播过程需要手动实现。这对于像线性回归等较为简单的模型来说,还可以应付,但实际使用中经常出现非常复杂的网络结构,此时如果手动实现反向传播,不仅费时费力,而且容易出错,难以检查。 torch.autograd就是为方便用户使用,而专门开发的一套自动求导引擎,它能够根据输入和前向传播过程自动构建计算图,并执行反向传播。 requir...

用Tensor训练网络很方便,但是反向传播过程需要手动实现。这对于像线性回归等较为简单的模型来说,还可以应付,但实际使用中经常出现非常复杂的网络结构,此时如果手动实现反向传播,不仅费时费力,而且容易出错,难以检查。

torch.autograd就是为方便用户使用,而专门开发的一套自动求导引擎,它能够根据输入和前向传播过程自动构建计算图,并执行反向传播。

requires_grad

import torch as t

  
 
  • 1
#在创建tensor的时候指定requires_grad
a = t.randn(3,4, requires_grad=True)

  
 
  • 1
  • 2

文章来源: maoli.blog.csdn.net,作者:刘润森!,版权归原作者所有,如需转载,请联系作者。

原文链接:maoli.blog.csdn.net/article/details/90145009

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。