使用LSTM进行情感分析

举报
毛利 发表于 2021/07/15 08:36:34 2021/07/15
【摘要】 案例流程 1) 制作词向量,可以使用gensim这个库,也可以直接用现成的 2) 词和ID的映射,常规套路了 3) 构建RNN网络架构 4) 训练我们的模型 5) 试试咋样 导入数据 首先,我们需要去创建词向量。为了简单起见,我们使用训练好的模型来创建。 作为该领域的一个最大玩家,Google 已经帮助我们在大规模数据集上训练出来了 Word2Vec 模型,包...

案例流程

1) 制作词向量,可以使用gensim这个库,也可以直接用现成的
2) 词和ID的映射,常规套路了
3) 构建RNN网络架构
4) 训练我们的模型
5) 试试咋样

  

导入数据

首先,我们需要去创建词向量。为了简单起见,我们使用训练好的模型来创建。

作为该领域的一个最大玩家,Google 已经帮助我们在大规模数据集上训练出来了 Word2Vec 模型,包括 1000 亿个不同的词!在这个模型中,谷歌能创建 300 万个词向量,每个向量维度为 300。

在理想情况下,我们将使用这些向量来构建模型,但是因为这个单词向量矩阵相当大(3.6G),我们用另外一个现成的小一些的,该矩阵由 GloVe 进行训练得到。矩阵将包含 400000 个词向量,每个向量的维数为 50。

我们将导入两个不同的数据结构,一个是包含 400000 个单词的 Python 列表,一个是包含所有单词向量值得 400000*50 维的嵌入矩阵。

import numpy as np
wordsList = np.load('./training_data/wordsList.npy'
  

文章来源: maoli.blog.csdn.net,作者:刘润森!,版权归原作者所有,如需转载,请联系作者。

原文链接:maoli.blog.csdn.net/article/details/90341411

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。