基于聚类的“图像分割”

举报
毛利 发表于 2021/07/15 08:24:54 2021/07/15
【摘要】 来源 https://www.icourse163.org/course/BIT-1001872001 图像分割: 利用图像的灰度、颜色、纹理、形状等特征,把图像分成若 干个互不重叠的区域,并使这些特征在同一区域内呈现相似性,在不同的区 域之间存在明显的差异性。然后就可以将分割的图像中具有独特性质的区域 提取出来用于不同的研究。 图像分割技术已在实际生活中得到广泛...

来源

https://www.icourse163.org/course/BIT-1001872001

图像分割:

利用图像的灰度、颜色、纹理、形状等特征,把图像分成若 干个互不重叠的区域,并使这些特征在同一区域内呈现相似性,在不同的区 域之间存在明显的差异性。然后就可以将分割的图像中具有独特性质的区域 提取出来用于不同的研究。 图像分割技术已在实际生活中得到广泛的应用。

例如:在机车检验领域, 可以应用到轮毂裂纹图像的分割,及时发现裂纹,保证行车安全;在生物医 学工程方面,对肝脏CT图像进行分割,为临床治疗

图像分割常用方法:

  1. 阈值分割:对图像灰度值进行度量,设置不同类别的阈值,达到分割的目的。
  2. 边缘分割:对图像边缘进行检测,即检测图像中灰度值发生跳变的地方,则为一片 区域的边缘。
  3. 直方图法:对图像的颜色建立直方图,而直方图的波峰波谷能够表示一块区域的颜 色值的范围,来达到分割的目的。
  4. 特定理论:基于聚类分析、小波变换等理论完成图像分割。

目标:利用K-means聚类算法对图像像素点颜色进行聚类实现简单的图像分割

输出:同一聚类中的点使用相同颜色标记,不同聚类颜色不同

文章来源: maoli.blog.csdn.net,作者:刘润森!,版权归原作者所有,如需转载,请联系作者。

原文链接:maoli.blog.csdn.net/article/details/90581765

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。