贝叶斯分类流程
【摘要】 朴素贝叶斯分类器的三个流程:
准备阶段:
在这个阶段我们需要确定特征属性,比如对于通过“身高”为高、“体重”为中等、“鞋码”为中等,这些特征 预测性别 问题中,对每个特征属性进行适当划分,然后由人工对一部分数据进行分类,形成训练样本。
训练阶段:
这个阶段就是生成分类器,主要工作是计算每个类别在训练样本中的出现频率及每个特征属性划分对每个类别的条件概率。输入是特...
朴素贝叶斯分类器的三个流程:
准备阶段:
在这个阶段我们需要确定特征属性,比如对于通过“身高”为高、“体重”为中等、“鞋码”为中等,这些特征 预测性别 问题中,对每个特征属性进行适当划分,然后由人工对一部分数据进行分类,形成训练样本。
训练阶段:
这个阶段就是生成分类器,主要工作是计算每个类别在训练样本中的出现频率及每个特征属性划分对每个类别的条件概率。输入是特征属性和训练样本,输出是分类器。
应用阶段:
这个阶段是使用分类器对新数据进行分类。输入是分类器和新数据,输出是新数据的分类结果。
贝叶斯原理概念:
一、先验概率:
通过经验来判断事情发生的概率 ,比如说“贝叶死”的发病率是万分之一,就是先验概率。再比如南方的梅雨季是 6-7 月,就是通过往年的气候总结出来的经验,这个时候下雨的概率就比其他时间高出很多。
二、后验概率:
后验概率就是发生结果之后,推测原因的概率。 比如说某人查出来了患有“贝叶死”,那么患病的原因可能是 A、B 或 C。患有“贝叶死”是因为原因 A 的概率就是后验概率。它是属于条件概率的一种。
三、条件概率:
事件 A 在另外一个事件 B 已经发生条件下的发生概率, 表示为 P(A|B),读作“在 B 发生的条件下 A 发生的概率”。比如原因
文章来源: maoli.blog.csdn.net,作者:刘润森!,版权归原作者所有,如需转载,请联系作者。
原文链接:maoli.blog.csdn.net/article/details/91369699
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)