时间序列预测模型
【摘要】 AR、MA、ARMA、ARIMA模型介绍
时间序列预测模型
时间序列分析模型建立了 观察结果 与 时间变化 的关系,能帮我们预测未来一段时间内的结果变化情况。
时间序列和逻辑回归的区别
首先,在选择模型前,我们需要确定结果与变量之间的关系。 回归分析训练得到的是目标变量 y 与自变量 x(一个或多个)的相关性,然后通过新的自变量 x 来预测目标变量 y。而时间序...
AR、MA、ARMA、ARIMA模型介绍
时间序列预测模型
时间序列分析模型建立了 观察结果 与 时间变化 的关系,能帮我们预测未来一段时间内的结果变化情况。
时间序列和逻辑回归的区别
首先,在选择模型前,我们需要确定结果与变量之间的关系。 回归分析训练得到的是目标变量 y 与自变量 x(一个或多个)的相关性,然后通过新的自变量 x 来预测目标变量 y。而时间序列分析得到的是目标变量 y 与时间的相关性。
另外, 回归分析擅长的是多变量与目标结果之间的分析 ,即便是单一变量,也往往与时间无关。而 时间序列分析建立在时间变化的基础上 ,它会 分析目标变量的趋势、周期、时期和不稳定因素等 。这些趋势和周期都是在时间维度的基础上,我们要观察的重要特征。
AR 模型
AR 的英文全称叫做 Auto Regressive,中文叫 自回归模型 。这个算法的思想比较简单,它认为过去若干时刻的点通过线性组合,再加上白噪声就可以预测未来某个时刻的点。在我们日常生活环境中就存在白噪声,在数据挖掘的过程中,你可以把它理解为一个期望为 0,方差为常数的纯随机过程。AR 模型还存在一个阶数,称为 AR(p)模型,也叫作 p 阶自回归模型。它指的是通过这个时刻点的前 p 个点,通过线性组合再加上白噪声来预测当前时刻点的值。
</
文章来源: maoli.blog.csdn.net,作者:刘润森!,版权归原作者所有,如需转载,请联系作者。
原文链接:maoli.blog.csdn.net/article/details/91361404
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)