机器学习之决策树(下)

举报
毛利 发表于 2021/07/15 08:04:55 2021/07/15
【摘要】 在决策树中有一个很重要的概念就是深度 没错决策树很容易过拟合 从iris来看下所谓的过拟合 环境 jupyter notebook 导入包 import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib as mpl from sklea...

在决策树中有一个很重要的概念就是深度

没错决策树很容易过拟合

从iris来看下所谓的过拟合

环境

  • jupyter notebook

导入包


import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib as mpl
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.datasets import load_iris
import pydotplus
mpl.rcParams['font.sans-serif'] = ['simHei']
mpl.rcParams['axes.unicode_minus'] = False

iris_feature_E = 'sepal length', 'sepal width', 'petal length', 'petal width'
iris_feature = '花萼长度', '花萼宽度', '花瓣长度', '花瓣宽度'
iris_class = 'Iris-setosa', 'Iris-versicolor', 'Iris-virginica'
# 加载数据
x = pd.DataFrame(load_iris().data)
y = load_iris().target


  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21

图片是二维的,所以只能使用两个特征

文章来源: maoli.blog.csdn.net,作者:刘润森!,版权归原作者所有,如需转载,请联系作者。

原文链接:maoli.blog.csdn.net/article/details/102150981

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。