R语言神经网络
【摘要】
library(nnet)
1
Warning message:
"package 'nnet' was built under R version 3.5.3"
12
x1 <- round(runif(2000,1,2000))
x2 <- round(runif(2000,1,2000))
12
x11 <- scale(x1[1:...
library(nnet)
- 1
Warning message:
"package 'nnet' was built under R version 3.5.3"
- 1
- 2
x1 <- round(runif(2000,1,2000))
x2 <- round(runif(2000,1,2000))
- 1
- 2
x11 <- scale(x1[1:1900])
x12 <- scale(x2[1:1900])
x21 <- scale(x1[1901:2000])
x22 <- scale(x2[1901:2000])
- 1
- 2
- 3
- 4
y1 <- x11^2 +x12^2
- 1
y2 <- x21^2+ x22^2
train<-cbind(x11,x12,y1)
test <- cbind(x21,x22,y2)
- 1
- 2
- 3
nn <- nnet(train[,3]~.,train[,-3],size=6,decay = 0.01,maxit = 1000,linout = T)
- 1
# weights: 25
initial value 10075.565825
iter 10 value 2340.410983
iter 20 value 592.177348
iter 30 value 219.730823
iter 40 value 52.509799
iter 50 value 19.285671
iter 60 value 8.751054
iter 70 value 7.858170
iter 80 value 7.029086
iter 90 value 5.948757
iter 100 value 5.687481
iter 110 value 5.666755
iter 120 value 5.664340
iter 130 value 5.622939
iter 140 value 5.497017
iter 150 value 5.446309
iter 160 value 5.444145
iter 170 value 5.439014
iter 180 value 5.353202
iter 190 value 5.228943
iter 200 value 5.149531
iter 210 value 5.070757
iter 220 value 5.049548
iter 230 value 5.014714
iter 240 value 4.950743
iter 250 value 4.943060
iter 260 value 4.942651
final value 4.942645
converged
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
nn
- 1
a 2-6-1 network with 25 weights
inputs: V1 V2
output(s): train[, 3]
options were - linear output units decay=0.01
- 1
- 2
- 3
- 4
pp <- predict(nn,test)
- 1
plot(pp,y2)
- 1
# AMORE实现BP网络
library('AMORE')
- 1
- 2
fivenum(x11)
- 1
- -1.76085794812317
- -0.862405626815202
- 0.0506626652700281
- 0.84938248009788
- 1.66959636959817
fivenum(x12)
- 1
- -1.74190485072
- -0.867376734891097
- 0.025316653373426
- 0.866109263250477
- 1.71468698988565
net <- newff(n.neurons=c(2,5,1),learning.rate.global=1e-3, momentum.global=0.4,error.criterium='LMS', Stao=NA,hidden.layer="tansig",output.layer="purelin",method="ADAPTgdwm")
- 1
- 2
- 3
res<- train(net,train[,-3],y1,error.criterium = "LMS", report = TRUE,show.step = 100,n.show=10)
- 1
- 2
index.show: 1 LMS 0.0340939331074392
index.show: 2 LMS 0.0141267812308106
index.show: 3 LMS 0.00582576799493561
index.show: 4 LMS 0.00277297232823935
index.show: 5 LMS 0.00136366703334354
index.show: 6 LMS 0.000715656665439051
index.show: 7 LMS 0.000427191082734316
index.show: 8 LMS 0.000302547940536113
index.show: 9 LMS 0.000249249579120589
index.show: 10 LMS 0.00022584996446879
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
x<- sim(res$net,test[,-3])
- 1
library(rgl)
- 1
plot3d(x11,x12,y1,col="blue")
plot3d(x21,x22,z,col="blue")
- 1
- 2
文章来源: maoli.blog.csdn.net,作者:刘润森!,版权归原作者所有,如需转载,请联系作者。
原文链接:maoli.blog.csdn.net/article/details/97945039
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)