RDKit | 基于机器学习的化合物活性预测模型
【摘要】 主成分分析(Principal Component Analysis,PCA)
PCA是非常经典的降维算法,属于无监督降维,做机器学习的应该都有所了解。但是,除了基本的PCA推导和应用之外,还有SparsePCA、KernelPCA、TruncatedSVD等等,另外PCA和特征值、奇异值的关系以及SparsePCA和...
主成分分析(Principal Component Analysis,PCA)
PCA是非常经典的降维算法,属于无监督降维,做机器学习的应该都有所了解。但是,除了基本的PCA推导和应用之外,还有SparsePCA、KernelPCA、TruncatedSVD等等,另外PCA和特征值、奇异值的关系以及SparsePCA和字典学习(Dict Learning,Lasso)的关系等等,也是比较有趣的事情。
PCA算法概念
PCA(PrincipalComponent Analysis)主成分分析,也称为卡尔胡宁-勒夫变换(Karhunen-Loeve Transform),是一种用于探索高维数据结构的技术。
PCA是一种较为常用的降维技术,PCA的思想是将维特征映射到维上,这维是全新的正交特征。这维特征称为主元,是重新构造出来的维特征。在PCA中,数据从原来的坐标系转换到新的坐标系下,新的坐标系的选择与数据本身是密切相关的。第一个新坐标轴选择的是原始数据中方差最大的方向,第二个新坐标轴选择和第一个坐标轴正交且具有最大方差的方向。该过程一直重复,重复次数为原始数据中特征的数目。大部分方差都包含在最前面的几个新坐标轴中。因此,可以忽略余下的坐标轴,即对数据进行降维处理。
文章来源: drugai.blog.csdn.net,作者:DrugAI,版权归原作者所有,如需转载,请联系作者。
原文链接:drugai.blog.csdn.net/article/details/82467904
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)