基于神经网络的溶解度预测和回归分析

举报
DrugAI 发表于 2021/07/15 03:31:33 2021/07/15
【摘要】 人工智能是一个主题,尝试使用神经网络作为模型建立化合物物理性质的预测模型。机器学习库是由Google开发和使用的TensorFlow。Keras是一个使TensorFlow的神经网络功能更易于使用的软件包。 <数据集文件见:https://download.csdn.net/download/u012325865/10670205> 代码示例 ...

人工智能是一个主题,尝试使用神经网络作为模型建立化合物物理性质的预测模型。机器学习库是由Google开发和使用的TensorFlow。Keras是一个使TensorFlow的神经网络功能更易于使用的软件包。


<数据集文件见:https://download.csdn.net/download/u012325865/10670205>


代码示例


基于神经网络的溶解度预测


   
  1. #导入依赖包
  2. from rdkit import Chem
  3. from rdkit.Chem.Draw import IPythonConsole
  4. from mordred import descriptors, Calculator #pip install mordred
  5. import numpy as np
  6. from sklearn.preprocessing import StandardScaler
  7. from sklearn import model_selection
  8. from keras.models import Sequential
  9. from keras.layers import Dense, Activation
  10. from keras.optimizers import SGD

   
  1. calc = Calculator(descriptors, ignore_3D = True)
  2. #加载数据
  3. sdf = [ mol for mol in Chem.SDMolSupplier('solubility.sdf')]
  4. #使用mordred计算sdf文件中的分子化学描述符
  5. X = calc.pandas(sdf).astype('float').dropna(axis = 1)


   
  1. #转换为Numpy格式数组
  2. X = np.array(X, dtype = np.float32)
  3. #转换为平均值0,每个描述符的色散1
  4. st = StandardScaler()
  5. X= st.fit_transform(X)
  6. #保存到npy文件供以后重用
  7. np.save("X_2d.npy", X)

   
  1. #定义读取溶解度的函数
  2. def getResponse( mols, prop= "SOL" ):
  3.    Y = []
  4.    for mol in mols:
  5.        act = mol.GetProp( prop )
  6.        Y.append( act )
  7.    return Y
  8. #从sdf文件中读取溶解度
  9. Y = getResponse(sdf)
  10. #转换为Numpy格式数组
  11. Y = np.array(Y, dtype = np.float32)
  12. #保存到npy文件供以后重用
  13. np.save("Y_2d.npy", Y)

   
  1. #重新随机划分训练集和测试集
  2. X_train, X_test, y_train, y_test = model_selection.train_test_split(X, Y, test_size=0.25, random_state=42)
  3. np.save("X_train.npy", X_train)
  4. np.save("X_test.npy", X_test)
  5. np.save("y_train.npy", y_train)
  6. np.save("y_test.npy", y_test)

   
  1. model = Sequential()
  2. #输入层。传递给下一层的维度为50。 输入数据维度(input_dim)是1114
  3. model.add(Dense(units = 50, input_dim = X.shape[1]))
  4. model.add(Activation("sigmoid"))
  5. #输出层。 维度1,即输出单个值。
  6. model.add(Dense(units = 1))
  7. model.summary()


   
  1. #SGD是随机梯度下降法。 nesterov是Nesterov的加速度梯度下降法。
  2. model.compile(loss = 'mean_squared_error',
  3.    optimizer = SGD(lr = 0.01, momentum = 0.9, nesterov = True),
  4.    metrics=['accuracy'])
  5. history = model.fit(X_train, y_train, epochs = 100, batch_size = 32,
  6.    validation_data = (X_test, y_test))
  7. score = model.evaluate(X_test, y_test, verbose = 0)
  8. print('Test loss:', score[0])
  9. print('Test accuracy:', score[1])
  10. y_pred = model.predict(X_test)
  11. rms = (np.mean((y_test - y_pred) ** 2)) ** 0.5
  12. #s = np.std(y_test - y_pred)
  13. print("Neural Network RMS", rms)


   
  1. %matplotlib inline
  2. import matplotlib.pyplot as plt
  3. plt.figure()
  4. plt.scatter(y_train, model.predict(X_train), label = 'Train', c = 'blue')
  5. plt.title('Neural Network Predictor')
  6. plt.xlabel('Measured Solubility')
  7. plt.ylabel('Predicted Solubility')
  8. plt.scatter(y_test, model.predict(X_test), c = 'lightgreen', label = 'Test', alpha = 0.8)
  9. plt.legend(loc = 4)
  10. plt.savefig('Neural Network Predictor.png', dpi=300)
  11. plt.show()


   
  1. import matplotlib.pyplot as plt
  2. loss = history.history['loss']
  3. val_loss = history.history['val_loss']
  4. epochs = len(loss)
  5. plt.plot(range(epochs), loss, marker = '.', label = 'loss')
  6. plt.plot(range(epochs), val_loss, marker = '.', label = 'val_loss')
  7. plt.legend(loc = 'best')
  8. plt.grid()
  9. plt.xlabel('epoch')
  10. plt.ylabel('loss')
  11. plt.show()


   
  1. model.compile(loss = 'mean_squared_error',
  2.    optimizer = SGD(lr = 0.01, momentum = 0.9, nesterov = True),
  3.    metrics=['accuracy'])
  4. from keras.callbacks import EarlyStopping
  5. history = model.fit(X_train, y_train, epochs = 100, batch_size = 32,
  6.    validation_data=(X_test, y_test), callbacks = [EarlyStopping()])
  7. score = model.evaluate(X_test, y_test, verbose = 0)
  8. print('Test loss:', score[0])
  9. print('Test accuracy:', score[1])
  10. y_pred = model.predict(X_test)
  11. rms = (np.mean((y_test - y_pred) ** 2)) ** 0.5
  12. #s = np.std(y_test - y_pred)
  13. print("Neural Network RMS", rms)

PLSR分析:偏最小二乘回归法分析


   
  1. import numpy as np
  2. from sklearn.preprocessing import StandardScaler
  3. from sklearn import model_selection
  4. from sklearn.metrics import mean_squared_error
  5. from sklearn.metrics import r2_score
  6. from sklearn.cross_decomposition import PLSRegression
  7. import sklearn
  8. print("sklearn ver.", sklearn.__version__)
  9. print("numpy ver.", np.__version__)

   
  1. #加载保存的数据文件
  2. X = np.load("X_2d.npy")
  3. Y = np.load("Y_2d.npy")
  4. #随机划分训练集和测试集
  5. X_train, X_test, y_train, y_test = model_selection.train_test_split(X,
  6.    Y, test_size = 0.25, random_state = 42)

   
  1. #计算解释溶解度分散的因子并使用多达15的因子进行回归分析。
  2. pls2 = PLSRegression(n_components = 15, scale = True)
  3. pls2.fit(X_train, y_train)
  4. pred_train = pls2.predict(X_train)
  5. pred_test = pls2.predict(X_test)
  6. rms = (np.mean((y_test - pred_test)**2))**0.5
  7. #s = np.std(y_test - y_pred)
  8. print("PLS regression RMS", rms)
PLS regression RMS 2.834230670918034

  

   
  1. import pylab as plt
  2. plt.figure()
  3. plt.scatter(y_train, pred_train, label = 'Train', c = 'blue')
  4. plt.title('PLSR Predictor')
  5. plt.xlabel('Measured Solubility')
  6. plt.ylabel('Predicted Solubility')
  7. plt.scatter(y_test, pred_test, c = 'lightgreen', label = 'Test', alpha = 0.8)
  8. plt.legend(loc = 4)
  9. plt.savefig('PLSR Predictor.png', dpi=300)
  10. plt.show()


参考资料:

http://www.ag.kagawa-u.ac.jp/charlesy/2017/07/21/keras%E3%81%A7%E5%8C%96%E5%90%88%E7%89%A9%E3%81%AE%E6%BA%B6%E8%A7%A3%E5%BA%A6%E4%BA%88%E6%B8%AC%EF%BC%88%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%A9%E3%83%AB%E3%83%8D%E3%83%83%E3%83%88%E3%83%AF%E3%83%BC/


文章来源: drugai.blog.csdn.net,作者:DrugAI,版权归原作者所有,如需转载,请联系作者。

原文链接:drugai.blog.csdn.net/article/details/105683685

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。