Machine Learning | 基于逻辑回归做二分类进行癌症预测

举报
DrugAI 发表于 2021/07/15 03:38:37 2021/07/15
【摘要】 导入包 import pandas as pdimport numpy as npfrom sklearn.datasets import load_bostonfrom sklearn.linear_model import LinearRegression, SGDRegressor, Ridge, LogisticRegressionfrom sklearn.mod...

导入包


  
  1. import pandas as pd
  2. import numpy as np
  3. from sklearn.datasets import load_boston
  4. from sklearn.linear_model import LinearRegression, SGDRegressor, Ridge, LogisticRegression
  5. from sklearn.model_selection import train_test_split
  6. from sklearn.preprocessing import StandardScaler
  7. from sklearn.metrics import mean_squared_error, classification_report
  8. from sklearn.externals import joblib

构造列标签名字 

column = ['Sample code number','Clump Thickness', 'Uniformity of Cell Size','Uniformity of Cell Shape','Marginal Adhesion', 'Single Epithelial Cell Size','Bare Nuclei','Bland Chromatin','Normal Nucleoli','Mitoses','Class']
 

读取数据 


  
  1. data = pd.read_csv("breast-cancer-wisconsin.csv", names=column)
  2. data.head()


 缺失值进行处理


  
  1. data = data.replace(to_replace='?', value=np.nan)
  2. data = data.dropna()

数据的分割

x_train, x_test, y_train, y_test = train_test_split(data[column[1:10]], data[column[10]], test_size=0.25)
 

标准化处理


  
  1. std = StandardScaler()
  2. x_train = std.fit_transform(x_train)
  3. x_test = std.transform(x_test)

逻辑回归预测


  
  1. lg = LogisticRegression(C=1.0)
  2. lg.fit(x_train, y_train)
  3. print(lg.coef_)

  
  1. LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
  2. intercept_scaling=1, max_iter=100, multi_class='warn',
  3. n_jobs=None, penalty='l2', random_state=None, solver='warn',
  4. tol=0.0001, verbose=0, warm_start=False)

  
  1. [[ 1.60392495 -0.11066665 0.93702846 1.01160157 -0.31111269 1.20876603
  2. 1.20701977 1.04581779 0.81269039]]

  
  1. y_predict = lg.predict(x_test)
  2. print("准确率:", lg.score(x_test, y_test))
  3. print("召回率:", classification_report(y_test, y_predict, labels=[2, 4], target_names=["良性", "恶性"]))

 

文章来源: drugai.blog.csdn.net,作者:DrugAI,版权归原作者所有,如需转载,请联系作者。

原文链接:drugai.blog.csdn.net/article/details/102001398

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。