DGL | 基于深度图学习框架DGL的分子图生成
【摘要】 引言
Deep Graph Library (DGL) 是一个在图上做深度学习的框架。在0.3.1版本中,DGL支持了基于PyTorch的化学模型库。
如何生成分子图是我感兴趣的。
环境准备
PyTorch:深度学习框架
DGL:用于图上的深度学习,支持PyTorch、MXNet等多种深度学习框架
RDK...
引言
Deep Graph Library (DGL) 是一个在图上做深度学习的框架。在0.3.1版本中,DGL支持了基于PyTorch的化学模型库。
如何生成分子图是我感兴趣的。
环境准备
分子生成与Junction Tree VAE
分子生成
候选药用化合物的数量估计为10 ^ {23} -10 ^ {60} ,但是合成所有这些化合物是不现实的,每年都会发现新的化合物。到目前为止,仅合成了大约10 ^ 8 。
设计新化合物,考虑其合成方法,在药物发现的过程中尝试实际合成的化合物需要大量的时间和金钱,故AI药物发现具有了原始动机。药物发现的的目标是产生对疾病有效的药物,副作用更少且易合成。
Junction Tree VAE
JT-VAE (
文章来源: drugai.blog.csdn.net,作者:DrugAI,版权归原作者所有,如需转载,请联系作者。
原文链接:drugai.blog.csdn.net/article/details/103143855
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)