Machine Learning | (10) 回归算法-岭回归
Machine Learning | (1) Scikit-learn与特征工程
Machine Learning | (2) sklearn数据集与机器学习组成
Machine Learning | (3) Scikit-learn的分类器算法-k-近邻
Machine Learning | (4) Scikit-learn的分类器算法-逻辑回归
Machine Learning | (5) Scikit-learn的分类器算法-朴素贝叶斯
Machine Learning | (6) Scikit-learn的分类器算法-性能评估
Machine Learning | (7) Scikit-learn的分类器算法-决策树(Decision Tree)
Machine Learning | (8) Scikit-learn的分类器算法-随机森林(Random Forest)
Machine Learning | (9) 回归算法-线性回归
Machine Learning | (10) 回归算法-岭回归
回归算法之岭回归
具有L2正则化的线性最小二乘法。岭回归是一种专用于共线性数据分析的有偏估计回归方法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘法的无偏性,以损失部分信息、降低精度为代价获得回归系数更为符合实际、更可靠的回归方法,对病态数据的拟合要强于最小二乘法。当数据集中存在共线性的时候,岭回归就会有用。
sklearn.linear_model.Ridge
-
class sklearn.linear_model.Ridge(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=0.001, solver='auto', random_state=None)**
-
"""
-
:param alpha:float类型,正规化的程度
-
"""
-
-
from sklearn.linear_model import Ridge
-
clf = Ridge(alpha=1.0)
-
clf.fit([[0, 0], [0, 0], [1, 1]], [0, .1, 1]))
方法
score(X, y, sample_weight=None)
clf.score()
属性
coef_
-
clf.coef_
-
array([ 0.34545455, 0.34545455])
intercept_
-
clf.intercept_
-
0.13636...
案例分析
-
-
-
def linearmodel():
-
"""
-
线性回归对波士顿数据集处理
-
:return: None
-
"""
-
-
# 1、加载数据集
-
-
ld = load_boston()
-
-
x_train,x_test,y_train,y_test = train_test_split(ld.data,ld.target,test_size=0.25)
-
-
# 2、标准化处理
-
-
# 特征值处理
-
std_x = StandardScaler()
-
x_train = std_x.fit_transform(x_train)
-
x_test = std_x.transform(x_test)
-
-
-
# 目标值进行处理
-
-
std_y = StandardScaler()
-
y_train = std_y.fit_transform(y_train)
-
y_test = std_y.transform(y_test)
-
-
# 3、估计器流程
-
-
# LinearRegression
-
lr = LinearRegression()
-
-
lr.fit(x_train,y_train)
-
-
# print(lr.coef_)
-
-
y_lr_predict = lr.predict(x_test)
-
-
y_lr_predict = std_y.inverse_transform(y_lr_predict)
-
-
print("Lr预测值:",y_lr_predict)
-
-
-
# SGDRegressor
-
sgd = SGDRegressor()
-
-
sgd.fit(x_train,y_train)
-
-
# print(sgd.coef_)
-
-
y_sgd_predict = sgd.predict(x_test)
-
-
y_sgd_predict = std_y.inverse_transform(y_sgd_predict)
-
-
print("SGD预测值:",y_sgd_predict)
-
-
# 带有正则化的岭回归
-
-
rd = Ridge(alpha=0.01)
-
-
rd.fit(x_train,y_train)
-
-
y_rd_predict = rd.predict(x_test)
-
-
y_rd_predict = std_y.inverse_transform(y_rd_predict)
-
-
print(rd.coef_)
-
-
# 两种模型评估结果
-
-
print("lr的均方误差为:",mean_squared_error(std_y.inverse_transform(y_test),y_lr_predict))
-
-
print("SGD的均方误差为:",mean_squared_error(std_y.inverse_transform(y_test),y_sgd_predict))
-
-
print("Ridge的均方误差为:",mean_squared_error(std_y.inverse_transform(y_test),y_rd_predict))
-
-
return None
文章来源: drugai.blog.csdn.net,作者:DrugAI,版权归原作者所有,如需转载,请联系作者。
原文链接:drugai.blog.csdn.net/article/details/104321088
- 点赞
- 收藏
- 关注作者
评论(0)