【数据挖掘实例】构建Xgboost模型,在电力用户的95598工单数据中的电费敏感用户预测(高敏用户模型)

举报
毛利 发表于 2021/07/15 01:37:50 2021/07/15
【摘要】 数据简介:电力用户的95598工单数据、电量电费营销数据等为基础,综合分析电费敏感客户特征,建立客户电费敏感度模型,对电费敏感用户的敏感程度进行量化评判,帮助供电企业快速、准确的识别电费敏感客户,从而对应的提供有针对性的电费、电量提醒等精细化用电服务。 数据下载链接:https://www.datafountain.cn/competitions/242 赛题任务 ...

数据简介:电力用户的95598工单数据、电量电费营销数据等为基础,综合分析电费敏感客户特征,建立客户电费敏感度模型,对电费敏感用户的敏感程度进行量化评判,帮助供电企业快速、准确的识别电费敏感客户,从而对应的提供有针对性的电费、电量提醒等精细化用电服务。

数据下载链接:https://www.datafountain.cn/competitions/242

赛题任务

在初赛中,参赛者需要以电力用户的95598工单数据、供电抢修服务数据、停电信息数据为基础,结合对受理工单文本内容的分析挖掘,建立客户停电敏感度模型,对客户对于停电事件的敏感程度进行量化分析,确定用户对停电事件是否敏感。

在复赛中,参赛者需要以电力用户的95598工单数据、电量电费营销数据等为基础,综合分析电费敏感客户特征,建立客户电费敏感度模型,对电费敏感用户的敏感程度进行量化评判,帮助供电企业快速、准确的识别电费敏感客户,从而对应的提供有针对性的电费、电量提醒等精细化用电服务。

文章来源: maoli.blog.csdn.net,作者:刘润森!,版权归原作者所有,如需转载,请联系作者。

原文链接:maoli.blog.csdn.net/article/details/114881418

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。