【数据挖掘实例】构建Xgboost模型,在电力用户的95598工单数据中的电费敏感用户预测(高敏用户模型)
【摘要】 数据简介:电力用户的95598工单数据、电量电费营销数据等为基础,综合分析电费敏感客户特征,建立客户电费敏感度模型,对电费敏感用户的敏感程度进行量化评判,帮助供电企业快速、准确的识别电费敏感客户,从而对应的提供有针对性的电费、电量提醒等精细化用电服务。
数据下载链接:https://www.datafountain.cn/competitions/242
赛题任务 ...
数据简介:电力用户的95598工单数据、电量电费营销数据等为基础,综合分析电费敏感客户特征,建立客户电费敏感度模型,对电费敏感用户的敏感程度进行量化评判,帮助供电企业快速、准确的识别电费敏感客户,从而对应的提供有针对性的电费、电量提醒等精细化用电服务。
数据下载链接:https://www.datafountain.cn/competitions/242
赛题任务
在初赛中,参赛者需要以电力用户的95598工单数据、供电抢修服务数据、停电信息数据为基础,结合对受理工单文本内容的分析挖掘,建立客户停电敏感度模型,对客户对于停电事件的敏感程度进行量化分析,确定用户对停电事件是否敏感。
在复赛中,参赛者需要以电力用户的95598工单数据、电量电费营销数据等为基础,综合分析电费敏感客户特征,建立客户电费敏感度模型,对电费敏感用户的敏感程度进行量化评判,帮助供电企业快速、准确的识别电费敏感客户,从而对应的提供有针对性的电费、电量提醒等精细化用电服务。
文章来源: maoli.blog.csdn.net,作者:刘润森!,版权归原作者所有,如需转载,请联系作者。
原文链接:maoli.blog.csdn.net/article/details/114881418
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)