DGL & RDKit | 基于Attentive FP的分子性质线性模型

举报
DrugAI 发表于 2021/07/15 01:09:06 2021/07/15
【摘要】 基于分子图的深度学习在化学和药物领域非常热门。 2019年8月13日JMC(Journal of Medicinal Chemistry)刊登了一篇文章“Pushing the Boundaries of Molecular Representation for Drug Discovery with the Graph Attention Mechanism”,介绍了一种...

基于分子图的深度学习在化学和药物领域非常热门。

2019年8月13日JMC(Journal of Medicinal Chemistry)刊登了一篇文章“Pushing the Boundaries of Molecular Representation for Drug Discovery with the Graph Attention Mechanism”,介绍了一种基于注意力机制的图神经网络模型(Attentive FP)。该模型可以用于分子表征,在多个药物发现相关的数据集上的预测表现达到当前最优,并且该模型所学到的内容具有可解释性。

DGL具有许多用于化学信息学、药物与生物信息学任务的函数。

DGL开发人员提供了基于DGL实现的Attentive FP模型, 基于Attentive FP探索分子性质预测的线性模型。

 

文章来源: drugai.blog.csdn.net,作者:DrugAI,版权归原作者所有,如需转载,请联系作者。

原文链接:drugai.blog.csdn.net/article/details/104868265

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。