使用Hyperopt实现机器学习自动调参

举报
毛利 发表于 2021/07/15 00:14:30 2021/07/15
【摘要】 文章目录 机器学习自动调参 1. Hyperopt **Hyperopt搜索参数空间** 参数空间的设置 使用sample函数从参数空间内采样: 在参数空间内使用函数: **指定搜索的算法** 实例 Hyperopt调参XGBoost 2. 贝叶斯调参 机器学习自动调参 在实际应用中,我们需要选取合适的模型...

机器学习自动调参

在实际应用中,我们需要选取合适的模型,并对模型调参,得到一组合适的参数。尤其是在模型的调参阶段,需要花费大量的时间和精力,却又效率低下。但是我们可以换一个角度来看待这个问题,模型的选取,以及模型中需要调节的参数,可以看做是一组变量,模型的质量标准(比如正确率,AUC)等等可以看做是目标函数,这个问题就是超参数的优化的问题。我们可以使用搜索算法来解决。

假设有如下函数:

def q (args) : x, y = args return x ∗∗ 2 + y ∗∗ 2

文章来源: maoli.blog.csdn.net,作者:刘润森!,版权归原作者所有,如需转载,请联系作者。

原文链接:maoli.blog.csdn.net/article/details/115793138

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。