教你使用TensorFlow2判断细胞图像是否感染

举报
毛利 发表于 2021/07/15 00:38:12 2021/07/15
【摘要】 @Author:Runsen 在本教程中,我们将使用 TensorFlow (Keras API) 实现一个用于二进制分类任务的深度学习模型,该任务包括将细胞的图像标记为感染或未感染疟疾。 数据集来源:https://www.kaggle.com/iarunava/cell-images-for-detecting-malaria 数据集包含2个文件夹 感染...

@Author:Runsen

在本教程中,我们将使用 TensorFlow (Keras API) 实现一个用于二进制分类任务的深度学习模型,该任务包括将细胞的图像标记为感染或未感染疟疾。

数据集来源:https://www.kaggle.com/iarunava/cell-images-for-detecting-malaria

数据集包含2个文件夹

  • 感染::13780张图片
  • 未感染: 13780张图片

总共27558张图片。

此数据集取自NIH官方网站:https://ceb.nlm.nih.gov/repositories/malaria-datasets/

对于图片数据存在形状不一样的情况,因此需要使用 OpenCV 进行图像预处理。

将图片变成 numpy 数组(数字格式)的形式转换为灰度,并将其调整为一个(70x70)形状。

环境:kaggle,天池实验室或者gogole colab都可以。

导入相关模块

import cv2
import tensorflow as tf
from tensorflow.
  
 
  • 1
  • 2

文章来源: maoli.blog.csdn.net,作者:刘润森!,版权归原作者所有,如需转载,请联系作者。

原文链接:maoli.blog.csdn.net/article/details/117665537

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。