大数据计算引擎:impala对比hive

举报
不吃西红柿 发表于 2021/07/14 23:28:14 2021/07/14
【摘要】 目录 Impala与Hive的异同 数据存储 元数据 SQL解释处理 执行计划: 数据流: 内存使用: 调度: 容错: 适用面: Impala相对于Hive所使用的优化技术 Impala的优缺点 Impala与Hive的异同 数据存储 使用相同的存储数据池都支持把数据储于HDFS, HBase。 元数据 两者使用相同的元数据。 SQL解释...

目录

Impala与Hive的异同

数据存储

元数据

SQL解释处理

执行计划:

数据流:

内存使用:

调度:

容错:

适用面:

Impala相对于Hive所使用的优化技术

Impala的优缺点


Impala与Hive的异同

数据存储

使用相同的存储数据池都支持把数据储于HDFS, HBase。

元数据

两者使用相同的元数据。

SQL解释处理

比较相似都是通过词法分析生成执行计划。

 

执行计划:

Hive: 依赖于MapReduce执行框架,执行计划分成map->shuffle->reduce->map->shuffle->reduce…的模型。如果一个Query会被编译成多轮MapReduce,则会有更多的写中间结果。由于MapReduce执行框架本身的特点,过多的中间过程会增加整个Query的执行时间。

Impala: 把执行计划表现为一棵完整的执行计划树,可以更自然地分发执行计划到各个Impalad执行查询,而不用像Hive那样把它组合成管道型的map->reduce模式,以此保证Impala有更好的并发性和避免不必要的中间sort与shuffle。

 

数据流:

Hive: 采用推的方式,每一个计算节点计算完成后将数据主动推给后续节点。

Impala: 采用拉的方式,后续节点通过getNext主动向前面节点要数据,以此方式数据可以流式的返回给客户端,且只要有1条数据被处理完,就可以立即展现出来,而不用等到全部处理完成,更符合SQL交互式查询使用。

 

内存使用:

Hive: 在执行过程中如果内存放不下所有数据,则会使用外存,以保证Query能顺序执行完。每一轮MapReduce结束,中间结果也会写入HDFS中,同样由于MapReduce执行架构的特性,shuffle过程也会有写本地磁盘的操作。

Impala: 在遇到内存放不下数据时,当前版本1.0.1是直接返回错误,而不会利用外存,以后版本应该会进行改进。这使用得Impala目前处理Query会受到一定的限制,最好还是与Hive配合使用。Impala在多个阶段之间利用网络传输数据,在执行过程不会有写磁盘的操作(insert除外)。


调度:

Hive: 任务调度依赖于Hadoop的调度策略。

Impala: 调度由自己完成,目前只有一种调度器simple-schedule,它会尽量满足数据的局部性,扫描数据的进程尽量靠近数据本身所在的物理机器。调度器目前还比较简单,在SimpleScheduler::GetBackend中可以看到,现在还没有考虑负载,网络IO状况等因素进行调度。但目前Impala已经有对执行过程的性能统计分析,应该以后版本会利用这些统计信息进行调度吧。


容错:

Hive: 依赖于Hadoop的容错能力。

Impala: 在查询过程中,没有容错逻辑,如果在执行过程中发生故障,则直接返回错误(这与Impala的设计有关,因为Impala定位于实时查询,一次查询失败,再查一次就好了,再查一次的成本很低)。但从整体来看,Impala是能很好的容错,所有的Impalad是对等的结构,用户可以向任何一个Impalad提交查询,如果一个Impalad失效,其上正在运行的所有Query都将失败,但用户可以重新提交查询由其它Impalad代替执行,不会影响服务。对于State Store目前只有一个,但当State Store失效,也不会影响服务,每个Impalad都缓存了State Store的信息,只是不能再更新集群状态,有可能会把执行任务分配给已经失效的Impalad执行,导致本次Query失败。


适用面:

Hive: 复杂的批处理查询任务,数据转换任务。

Impala:实时数据分析,因为不支持UDF,能处理的问题域有一定的限制,与Hive配合使用,对Hive的结果数据集进行实时分析。

 

Impala相对于Hive所使用的优化技术

1、没有使用MapReduce进行并行计算,虽然MapReduce是非常好的并行计算框架,但它更多的面向批处理模式,而不是面向交互式的SQL执行。与MapReduce相比:Impala把整个查询分成一执行计划树,而不是一连串的MapReduce任务,在分发执行计划后,Impala使用拉式获取数据的方式获取结果,把结果数据组成按执行树流式传递汇集,减少的了把中间结果写入磁盘的步骤,再从磁盘读取数据的开销。Impala使用服务的方式避免每次执行查询都需要启动的开销,即相比Hive没了MapReduce启动时间。

2、使用LLVM产生运行代码,针对特定查询生成特定代码,同时使用Inline的方式减少函数调用的开销,加快执行效率。

3、充分利用可用的硬件指令(SSE4.2)。

4、更好的IO调度,Impala知道数据块所在的磁盘位置能够更好的利用多磁盘的优势,同时Impala支持直接数据块读取和本地代码计算checksum。

5、通过选择合适的数据存储格式可以得到最好的性能(Impala支持多种存储格式)。

6、最大使用内存,中间结果不写磁盘,及时通过网络以stream的方式传递。

 

Impala的优缺点

优点:

  • 支持SQL查询,快速查询大数据。
  • 可以对已有数据进行查询,减少数据的加载,转换。
  • 多种存储格式可以选择(Parquet, Text, Avro, RCFile, SequeenceFile)。
  • 可以与Hive配合使用。

缺点:

  • 不支持用户定义函数UDF。
  • 不支持text域的全文搜索。
  • 不支持Transforms。
  •  不支持查询期的容错。
  • 对内存要求高。

 

传送门: 大数据生态圈常用组件(一):数据库、查询引擎、ETL工具、调度工具等

 

 

文章来源: notomato.blog.csdn.net,作者:kissme丶,版权归原作者所有,如需转载,请联系作者。

原文链接:notomato.blog.csdn.net/article/details/110434090

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。