在机器学习中,怎么对超参数Hyper parameter优化?我总结了以下常见的方法

举报
毛利 发表于 2021/07/15 01:46:59 2021/07/15
【摘要】 @Author:Runsen 机器模型中一般有两类参数,一类是可以从数据中学习估计得到,我们称为参数(Parameter)。还有一类参数时无法从数据中估计,只能靠人的经验进行设计指定,我们称为超参数(Hyper parameter)。超参数是在开始学习过程之前设置值的参数。相反,其他参数的值通过训练得出。 在机器学习中,怎么对超参数Hyper parameter优化...

@Author:Runsen

机器模型中一般有两类参数,一类是可以从数据中学习估计得到,我们称为参数(Parameter)。还有一类参数时无法从数据中估计,只能靠人的经验进行设计指定,我们称为超参数(Hyper parameter)。超参数是在开始学习过程之前设置值的参数。相反,其他参数的值通过训练得出。

在机器学习中,怎么对超参数Hyper parameter优化?我总结了以下常见的方法

超参数优化

超参数优化是机器/深度学习中最常见的方法之一。机器学习模型调优是一种优化问题。我们有一组超参数(例如学习率、隐藏单元的数量等),我们的目标是找出最小值(例如损失)或最大值(例如精度)的组合。

使用的数据集是信用卡欺诈检测 Kaggle 数据集,具体下载链接:https://www.kaggle.com/mlg-ulb/creditcardfraud

import pandas as pd
df = pd.read_csv("creditcard.csv")

  
 
  • 1
  • 2

首先,

文章来源: maoli.blog.csdn.net,作者:刘润森!,版权归原作者所有,如需转载,请联系作者。

原文链接:maoli.blog.csdn.net/article/details/118095149

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。