DeepChem | 基于DeepChem的GCN预测化合物溶解度
【摘要】
导入库
from __future__ import print_functionfrom __future__ import divisionfrom __future__ import unicode_literalsfrom rdkit import Chemfrom rdkit.Chem.Draw import IPythonCons...
导入库
-
from __future__ import print_function
-
from __future__ import division
-
from __future__ import unicode_literals
-
from rdkit import Chem
-
from rdkit.Chem.Draw import IPythonConsole
-
from rdkit.Chem import Draw
-
import deepchem as dc
-
import numpy as np
-
import tensorflow as tf
-
from deepchem.models import GraphConvModel
载入数据
data = open('delaney-processed.csv')
特征化
-
delaney_tasks = ['measured log solubility in mols per litre']
-
featurizer = dc.feat.ConvMolFeaturizer()
-
loader = dc.data.CSVLoader(tasks=delaney_tasks, smiles_field="smiles", featurizer=featurizer)
-
dataset = loader.featurize(data, shard_size=8192)
-
-
# Initialize trans
文章来源: drugai.blog.csdn.net,作者:DrugAI,版权归原作者所有,如需转载,请联系作者。
原文链接:drugai.blog.csdn.net/article/details/112250604
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)