RDKit | 基于随机森林(RF)预测SARS-CoV 3CL蛋白酶抑制剂的pIC50
【摘要】
导入库
import sklearnfrom rdkit.Chem import AllChemfrom rdkit import Chemfrom rdkit.Chem import Descriptorsfrom sklearn.model_selection import train_test_splitfrom rdkit.ML.Descriptor...
导入库
-
import sklearn
-
from rdkit.Chem import AllChem
-
from rdkit import Chem
-
from rdkit.Chem import Descriptors
-
from sklearn.model_selection import train_test_split
-
from rdkit.ML.Descriptors import MoleculeDescriptors
-
import pandas as pd
-
from sklearn.pipeline import Pipeline
-
from sklearn.impute import SimpleImputer
-
import matplotlib.pyplot as plt
-
from sklearn.ensemble import RandomForestRegressor
-
import numpy as np
-
from sklearn.metrics import r2_score,mean_absolute_error, mean_squared_error
-
import seaborn as sn
-
from sklearn.preprocessing import StandardScaler
-
from rdkit.Avalon import pyAvalonTools
-
-
from rdkit import rdBase
-
print(rdBase.rdkitVersion)
2020.09.1
载入数据
-
dataset = pd.read_csv('3CLprotease_inhibitors_133.csv')
-
dataset.head()
文章来源: drugai.blog.csdn.net,作者:DrugAI,版权归原作者所有,如需转载,请联系作者。
原文链接:drugai.blog.csdn.net/article/details/112311203
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)