【小白学习keras教程】五、基于reuters数据集训练不同RNN循环神经网络模型

举报
毛利 发表于 2021/07/15 00:14:47 2021/07/15
【摘要】 @Author:Runsen 文章目录 循环神经网络RNN Load Dataset 1. Vanilla RNN 2. Stacked Vanilla RNN 3. LSTM 4. Stacked LSTM 循环神经网络RNN 前馈神经网络(例如 MLP 和 CNN)功能强大,但它们并未针对处理“顺序”数据进行优化 ...

@Author:Runsen

循环神经网络RNN

  • 前馈神经网络(例如 MLP 和 CNN)功能强大,但它们并未针对处理“顺序”数据进行优化

  • 换句话说,它们不具有先前输入的“记忆”

  • 例如,考虑翻译语料库的情况。 你需要考虑 “context” 来猜测下一个出现的单词

  • RNN 适合处理顺序格式的数据,因为它们具有 循环 结构

  • 换句话说,他们保留序列中早期输入的记忆

  • 但是,为了减少参数数量,不同时间步长的每一层需要共享相同的参数

文章来源: maoli.blog.csdn.net,作者:刘润森!,版权归原作者所有,如需转载,请联系作者。

原文链接:maoli.blog.csdn.net/article/details/118718809

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。