对抗生成网络:指马为斑马
        【摘要】 生成对抗网络GAN是去年以来比较火的一个技术,它通过一个生成网络来形成新的内容,再通过一个判别网络来判断生成的内容是否是想要的内容。一个简单的实现如下(非原创):# ResNetGeneratorimport torchimport torch.nn as nnclass ResNetBlock(nn.Module):    def __init__(self, dim):        s...
    
    
    
    生成对抗网络GAN是去年以来比较火的一个技术,它通过一个生成网络来形成新的内容,再通过一个判别网络来判断生成的内容是否是想要的内容。
一个简单的实现如下(非原创):
# ResNetGenerator
import torch
import torch.nn as nn
class ResNetBlock(nn.Module):
    def __init__(self, dim):
        super(ResNetBlock, self).__init__()
        self.conv_block = self.build_conv_block(dim)
    def build_conv_block(self, dim):
        conv_block = []
        conv_block += [nn.ReflectionPad2d(1)]
        conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=0, bias=True),
                       nn.InstanceNorm2d(dim),
                       nn.ReLU(True)]
        conv_block += [nn.ReflectionPad2d(1)]
        conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=0, bias=True),
                       nn.InstanceNorm2d(dim)]
        return nn.Sequential(*conv_block)
    def forward(self, x):
        out = x + self.conv_block(x)
        return out
class ResNetGenerator(nn.Module):
    def __init__(self, input_nc=3, output_nc=3, ngf=64, n_blocks=9): 
        assert(n_blocks >= 0)
        super(ResNetGenerator, self).__init__()
        self.input_nc = input_nc
        self.output_nc = output_nc
        self.ngf = ngf
        model = [nn.ReflectionPad2d(3),
                 nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0, bias=True),
                 nn.InstanceNorm2d(ngf),
                 nn.ReLU(True)]
        n_downsampling = 2
        for i in range(n_downsampling):
            mult = 2**i
            model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3,
                                stride=2, padding=1, bias=True),
                      nn.InstanceNorm2d(ngf * mult * 2),
                      nn.ReLU(True)]
        mult = 2**n_downsampling
        for i in range(n_blocks):
            model += [ResNetBlock(ngf * mult)]
        for i in range(n_downsampling):
            mult = 2**(n_downsampling - i)
            model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2),
                                         kernel_size=3, stride=2,
                                         padding=1, output_padding=1,
                                         bias=True),
                      nn.InstanceNorm2d(int(ngf * mult / 2)),
                      nn.ReLU(True)]
        model += [nn.ReflectionPad2d(3)]
        model += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)]
        model += [nn.Tanh()]
        self.model = nn.Sequential(*model)
    def forward(self, input):
        return self.model(input) 
我们可以用它来实现把马变成斑马,首先创建一个实例
netG = ResNetGenerator() 
然后下载一个训练好的模型参数给我们的netG
!git clone https://github.com/deep-learning-with-pytorch/dlwpt-code.git
model_path = 'dlwpt-code/data/p1ch2/horse2zebra_0.4.0.pth'
model_data = torch.load(model_path
netG.load_state_dict(model_data) 
将模型调整为评估模式
netG.eval() 
随便找一张马的图片,读取图片
from PIL import Image
from torchvision import transforms
img = Image.open("horse.jpg")
img 

对图片进行一些处理
preprocess = transforms.Compose([transforms.Resize(256), 
                                 transforms.ToTensor()])
img_t = preprocess(img)
batch_t = torch.unsqueeze(img_t, 0
batch_out = netG(batch_t) 
指马为斑马
out_t = (batch_out.data.squeeze() + 1.0) / 2.0
out_img = transforms.ToPILImage()(out_t)
out_img 

            【声明】本内容来自华为云开发者社区博主,不代表华为云及华为云开发者社区的观点和立场。转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息,否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
                cloudbbs@huaweicloud.com
                
            
        
        
        
        
        
        
        - 点赞
 - 收藏
 - 关注作者
 
            
           
评论(0)