HDOJ 1005 Number Sequence
Problem Description
A number sequence is defined as follows:
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
Input
The input consists of multiple test cases. Each test case contains 3 integers A, B and n on a single line (1 <= A, B <= 1000, 1 <= n <= 100,000,000). Three zeros signal the end of input and this test case is not to be processed.
Output
For each test case, print the value of f(n) on a single line.
Sample Input
1 1 3
1 2 10
0 0 0
Sample Output
2
5
发现很多同学都是以1,1为重复头,按照最多循环次数48来做的
我也参考了一些答案,发现:
1,不能以1,1 作为重复头;
2,自己先找周期。
#include<iostream>
#include<stdio.h>
using namespace std;
int f[100000005];
int main()
{ int a,b,n,i,j; f[1]=1;f[2]=1; while(scanf("%d%d%d",&a,&b,&n)) { int s=0;//记录周期 if(a==0&&b==0&&n==0) break; for(i=3;i<=n;i++) { f[i]=(a*f[i-1]+b*f[i-2])%7; for(j=2;j<i;j++) if(f[i-1]==f[j-1]&&f[i]==f[j]) //此题可以这样做的原因就是 2个确定后就可以决定后面的 { s=i-j; //cout<<j<<" "<<s<<" >>"<<i<<endl; break; } if(s>0) break; } if(s>0){ f[n]=f[(n-j)%s+j]; //cout<<"f["<<n<<"]:="<<"f["<<(n-j)%s+j<<"] "<<endl; } cout<<f[n]<<endl; } return 0;
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
文章来源: chenhx.blog.csdn.net,作者:谙忆,版权归原作者所有,如需转载,请联系作者。
原文链接:chenhx.blog.csdn.net/article/details/48473931
- 点赞
- 收藏
- 关注作者
评论(0)