HDOJ1019Least Common Multiple

举报
谙忆 发表于 2021/05/28 06:36:43 2021/05/28
【摘要】 Problem Description The least common multiple (LCM) of a set of positive integers is the smallest positive integer which is divisible by all the numbers in the set. For example, the LCM...

Problem Description
The least common multiple (LCM) of a set of positive integers is the smallest positive integer which is divisible by all the numbers in the set. For example, the LCM of 5, 7 and 15 is 105.

Input
Input will consist of multiple problem instances. The first line of the input will contain a single integer indicating the number of problem instances. Each instance will consist of a single line of the form m n1 n2 n3 … nm where m is the number of integers in the set and n1 … nm are the integers. All integers will be positive and lie within the range of a 32-bit integer.

Output
For each problem instance, output a single line containing the corresponding LCM. All results will lie in the range of a 32-bit integer.

Sample Input
2
3 5 7 15
6 4 10296 936 1287 792 1

Sample Output
105
10296

也就是求最小公倍数

/**题意:
求输入的所有数最小公倍数。

思路:
先用 欧几里德定理
求两个数的最小公倍数,所得的公倍数再与下一个数求最小公倍数。
**/
#include <stdio.h>
#include <stdlib.h>

int gcd(int a,int b)//欧几里德求最大公约数
{ if(b==0) return a; return gcd(b,a%b);
}
int main()
{ int t,n,m,i,a,b; scanf("%d",&t); while(t--) { scanf("%d%d",&n,&m); a=m; for(i=1;i<n;i++) { scanf("%d",&m); if(a<m) { b=a;a=m;m=b; } a=a/gcd(a,m)*m;//最小公倍数=两数之积/最大公约数 } printf("%d\n",a); } return 0;
}

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37

文章来源: chenhx.blog.csdn.net,作者:谙忆,版权归原作者所有,如需转载,请联系作者。

原文链接:chenhx.blog.csdn.net/article/details/49005049

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。