HDOJ/HDU 1015 Safecracker(枚举、暴力)

举报
谙忆 发表于 2021/05/28 07:54:52 2021/05/28
【摘要】 Problem Description === Op tech briefing, 2002/11/02 06:42 CST === “The item is locked in a Klein safe behind a painting in the second-floor library. Klein safes are extremely rare; mo...

Problem Description
=== Op tech briefing, 2002/11/02 06:42 CST ===
“The item is locked in a Klein safe behind a painting in the second-floor library. Klein safes are extremely rare; most of them, along with Klein and his factory, were destroyed in World War II. Fortunately old Brumbaugh from research knew Klein’s secrets and wrote them down before he died. A Klein safe has two distinguishing features: a combination lock that uses letters instead of numbers, and an engraved quotation on the door. A Klein quotation always contains between five and twelve distinct uppercase letters, usually at the beginning of sentences, and mentions one or more numbers. Five of the uppercase letters form the combination that opens the safe. By combining the digits from all the numbers in the appropriate way you get a numeric target. (The details of constructing the target number are classified.) To find the combination you must select five letters v, w, x, y, and z that satisfy the following equation, where each letter is replaced by its ordinal position in the alphabet (A=1, B=2, …, Z=26). The combination is then vwxyz. If there is more than one solution then the combination is the one that is lexicographically greatest, i.e., the one that would appear last in a dictionary.”

v - w^2 + x^3 - y^4 + z^5 = target

“For example, given target 1 and letter set ABCDEFGHIJKL, one possible solution is FIECB, since 6 - 9^2 + 5^3 - 3^4 + 2^5 = 1. There are actually several solutions in this case, and the combination turns out to be LKEBA. Klein thought it was safe to encode the combination within the engraving, because it could take months of effort to try all the possibilities even if you knew the secret. But of course computers didn’t exist then.”

=== Op tech directive, computer division, 2002/11/02 12:30 CST ===

“Develop a program to find Klein combinations in preparation for field deployment. Use standard test methodology as per departmental regulations. Input consists of one or more lines containing a positive integer target less than twelve million, a space, then at least five and at most twelve distinct uppercase letters. The last line will contain a target of zero and the letters END; this signals the end of the input. For each line output the Klein combination, break ties with lexicographic order, or ‘no solution’ if there is no correct combination. Use the exact format shown below.”

Sample Input
1 ABCDEFGHIJKL
11700519 ZAYEXIWOVU
3072997 SOUGHT
1234567 THEQUICKFROG
0 END

Sample Output
LKEBA
YOXUZ
GHOST
no solution

题意:输入一个数target 和一个字符串 s,在字符串 s 找出一个由5个字符组成的最大字符串使得v - w^2 + x^3 - y^4 + z^5 = target ;
分析:枚举所有的5个元素组成的集合,依次去判断
5层循环

import java.util.Arrays;
import java.util.Scanner;

public class Main{ static char at[]={' ','A','B','C','D','E','F','G','H','I','J' ,'K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z'}; public static void main(String[] args) { Scanner sc = new Scanner(System.in); //for(int i='A';i<='Z';i++){ //char c = (char)i; //System.out.print("'"+c+"',"); //} while(sc.hasNext()){ int target = sc.nextInt(); String str = sc.next(); if(target==0&&str.equals("END")){ return; } char chs[] = str.toCharArray(); Arrays.sort(chs); for(int i=0,j=chs.length-1;i<chs.length/2;i++,j--){ char c=chs[i]; chs[i]=chs[j]; chs[j]=c; } boolean haveAnswer = false; con: for(int a=0;a<chs.length;a++){ for(int b=0;b<chs.length;b++){ if(a==b){ continue; } for(int c=0;c<chs.length;c++){ if(a==c||b==c){ continue; } for(int d=0;d<chs.length;d++){ if(d==a||d==b||d==c){ continue; } for(int e=0;e<chs.length;e++){ if(e==a||e==b||e==c||e==d){ continue; } int ap[] = new int[5]; for(int j=0;j<ap.length;j++){ for(int i=1;i<at.length;i++){ if(j==0){ if(chs[a]==at[i]){ ap[0]=i; break; } }else if(j==1){ if(chs[b]==at[i]){ ap[1]=i; break; } }else if(j==2){ if(chs[c]==at[i]){ ap[2]=i; break; } }else if(j==3){ if(chs[d]==at[i]){ ap[3]=i; break; } }else if(j==4){ if(chs[e]==at[i]){ ap[4]=i; break; } } } } int sum=0; for(int i=0;i<ap.length;i++){ if(i%2==0){ sum+=Math.pow(ap[i], i+1); }else{ sum-=Math.pow(ap[i], i+1); } } if(sum==target){ String s=""; s+=chs[a]; s+=chs[b]; s+=chs[c]; s+=chs[d]; s+=chs[e]; System.out.println(s); haveAnswer=true; break con; } } } } } } if(!haveAnswer){ System.out.println("no solution"); } } }
}

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112

文章来源: chenhx.blog.csdn.net,作者:谙忆,版权归原作者所有,如需转载,请联系作者。

原文链接:chenhx.blog.csdn.net/article/details/51672926

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。