MindSpore新一代分子模拟库:SPONGE
MindSpore新一代分子模拟库:SPONGE,由北大和深圳湾实验室高毅勤课题组与华为MindSpore团队联合开发,具有高性能、模块化等特性,是一个完全自主研发的分子模拟软件库。基于MindSpore自动并行、图算融合等特性,SPONGE可高效地完成传统分子模拟过程,利用MindSpore自动微分的特性,可以将神经网络等AI方法与传统分子模拟进行结合。
背景介绍
分子模拟是指利用计算机以原子水平的分子模型来模拟分子结构与行为,进而模拟分子体系的各种物理、化学性质的方法。它是在实验基础上,通过基本原理,构筑起一套模型和算法,从而计算出合理的分子结构与分子行为。近年来,分子模拟技术发展迅速并且在多个学科领域得到了广泛的应用。在药物设计领域,可用于研究病毒、药物的作用机理等;在生物科学领域,可用于表征蛋白质的多级结构与性质;在材料学领域,可用于研究结构与力学性能、材料的优化设计等;在化学领域,可用于研究表面催化及机理;在石油化工领域,可用于分子筛催化剂结构表征、合成设计、吸附扩散,可构建和表征高分子链以及晶态或非晶态本体聚合物的结构,预测包括共混行为、机械性质、扩散、内聚等重要性质。
由于模拟的时空限制,传统分子动力学仿真软件的应用受到很大的限制,科研工作者需要不断地开发新的力场、抽样方法、结合新的技术(如AI算法)来拓展分子动力学仿真的场景。因此, SPONGE应运而生,具有完全自主的知识产权。SPONGE使用模块化的设计特性,支持科学家进行高效且便捷地搭建分子动力学模拟中所需要的相关计算模块。同时, SPONGE也具有传统模拟所需要的高效性。除此之外,SPONGE也天然地支持与人工智能算法的自然融合,并且能运用MindSPore框架自身的高性能计算特性。
相比于之前在传统分子模拟软件上结合SITS方法进行生物分子增强抽样,SPONGE原生支持SITS并对计算流程进行优化使得其使用SITS方法模拟生物体系更加高效。针对极化体系,传统分子模拟采用结合量化计算等方式来解决电荷浮动等问题。即使采用机器学习降低计算量也会浪费大量时间在程序数据传送的问题上。而SPONGE利用模块化的特点可支持内存上直接与机器学习程序通信大大降低了整体计算时间。
- 点赞
- 收藏
- 关注作者
评论(0)