HDOJ 1081(ZOJ 1074) To The Max(动态规划)

举报
谙忆 发表于 2021/05/27 19:16:36 2021/05/27
【摘要】 Problem Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array....

Problem Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.

As an example, the maximal sub-rectangle of the array:

0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2

is in the lower left corner:

9 2
-4 1
-1 8

and has a sum of 15.

Input
The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

Output
Output the sum of the maximal sub-rectangle.

Sample Input
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2

Sample Output
15

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
int a[2000];
int dp[150][150];

int main(){ int n; while(scanf("%d",&n)==1){ int t; memset(dp,0,sizeof(dp)); for(int i=1;i<=n;i++){ for(int j=1;j<=n;j++){ scanf("%d",&t); dp[i][j]=t+dp[i-1][j]; /// printf("i=%d",i); } }
// for(int i=0;i<=n;i++){
// for(int j=0;j<=n;j++){
// printf("%4d",dp[i][j]);
// }
// printf("\n");
// } int maxx=-1000; for(int i=1;i<=n;i++){ for(int j=i;j<=n;j++){ int sum=0; for(int k=1;k<=n;k++){ t=dp[j][k]-dp[i-1][k]; sum+=t; if(sum<0)  sum=0; if(sum>maxx) maxx=sum; } } } printf("%d\n",maxx); } return 0;
}

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41

文章来源: chenhx.blog.csdn.net,作者:谙忆,版权归原作者所有,如需转载,请联系作者。

原文链接:chenhx.blog.csdn.net/article/details/49700861

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。