HDOJ 1081(ZOJ 1074) To The Max(动态规划)
Problem Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
Sample Output
15
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
int a[2000];
int dp[150][150];
int main(){ int n; while(scanf("%d",&n)==1){ int t; memset(dp,0,sizeof(dp)); for(int i=1;i<=n;i++){ for(int j=1;j<=n;j++){ scanf("%d",&t); dp[i][j]=t+dp[i-1][j]; /// printf("i=%d",i); } }
// for(int i=0;i<=n;i++){
// for(int j=0;j<=n;j++){
// printf("%4d",dp[i][j]);
// }
// printf("\n");
// } int maxx=-1000; for(int i=1;i<=n;i++){ for(int j=i;j<=n;j++){ int sum=0; for(int k=1;k<=n;k++){ t=dp[j][k]-dp[i-1][k]; sum+=t; if(sum<0) sum=0; if(sum>maxx) maxx=sum; } } } printf("%d\n",maxx); } return 0;
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
文章来源: chenhx.blog.csdn.net,作者:谙忆,版权归原作者所有,如需转载,请联系作者。
原文链接:chenhx.blog.csdn.net/article/details/49700861
- 点赞
- 收藏
- 关注作者
评论(0)