如何避免Spark SQL做数据导入时产生大量小文件
01什么是小文件?
生产上,我们往往将Spark SQL作为Hive的替代方案,来获得SQL on Hadoop更出色的性能。因此,本文所讲的是指存储于HDFS中小文件,即指文件的大小远小于HDFS上块(dfs.block.size)大小的文件。
02小文件问题的影响
一方面,大量的小文件会给Hadoop集群的扩展性和性能带来严重的影响。NameNode在内存中维护整个文件系统的元数据镜像,用户HDFS的管理;其中每个HDFS文件元信息(位置,大小,分块等)对象约占150字节,如果小文件过多,会占用大量内存,直接影响NameNode的性能。相对的,HDFS读写小文件也会更加耗时,因为每次都需要从NameNode获取元信息,并与对应的DataNode建立连接。如果NameNode在宕机中恢复,也需要更多的时间从元数据文件中加载。
另一方面,也会给Spark SQL等查询引擎造成查询性能的损耗,大量的数据分片信息以及对应产生的Task元信息也会给Spark Driver的内存造成压力,带来单点问题。此外,入库操作最后的commit job操作,在Spark Driver端单点做,很容易出现单点的性能问题。
03Spark小文件产生的过程
1
数据源本身就是就含大量小文件
2
动态分区插入数据,没有Shuffle的情况下,输入端有多少个逻辑分片,对应的HadoopRDD就会产生多少个HadoopPartition,每个Partition对应于Spark作业的Task(个数为M),分区数为N。最好的情况就是(M=N) && (M中的数据也是根据N来预先打散的),那就刚好写N个文件;最差的情况下,每个Task中都有各个分区的记录,那文件数最终文件数将达到M * N个。这种情况下是极易产生小文件的。
比如我们拿TPCDS测试集中的store_sales进行举例, sql如下所示
use tpcds_1t_parquet;
INSERT overwrite table store_sales partition
(
ss_sold_date_sk
)
SELECT ss_sold_time_sk,
ss_item_sk,
ss_customer_sk,
ss_cdemo_sk,
ss_hdemo_sk,
ss_addr_sk,
ss_store_sk,
ss_promo_sk,
ss_ticket_number,
ss_quantity,
ss_wholesale_cost,
ss_list_price,
ss_sales_price,
ss_ext_discount_amt,
ss_ext_sales_price,
ss_ext_wholesale_cost,
ss_ext_list_price,
ss_ext_tax,
ss_coupon_amt,
ss_net_paid,
ss_net_paid_inc_tax,
ss_net_profit,
ss_sold_date_sk
FROM tpcds_1t_ext.et_store_sales;
首先我们得到其执行计划,如下所示,
== Physical Plan ==
InsertIntoHiveTable MetastoreRelation tpcds_1t_parquet, store_sales, Map(ss_sold_date_sk -> None), true, false
+- HiveTableScan [ss_sold_time_sk#4L, ss_item_sk#5L, ss_customer_sk#6L, ss_cdemo_sk#7L, ss_hdemo_sk#8L, ss_addr_sk#9L, ss_store_sk#10L, ss_promo_sk#11L, ss_ticket_number#12L, ss_quantity#13, ss_wholesale_cost#14, ss_list_price#15, ss_sales_price#16, ss_ext_discount_amt#17, ss_ext_sales_price#18, ss_ext_wholesale_cost#19, ss_ext_list_price#20, ss_ext_tax#21, ss_coupon_amt#22, ss_net_paid#23, ss_net_paid_inc_tax#24, ss_net_profit#25, ss_sold_date_sk#3L], MetastoreRelation tpcds_1t_ext, et_store_sales
store_sales的原生文件包含1616逻辑分片,对应生成1616 个Spark Task,插入动态分区表之后生成1824个数据分区加一个NULL值的分区,每个分区下都有可能生成1616个文件,这种情况下,最终的文件数量极有可能达到2949200。1T的测试集store_sales也就大概300g,这种情况每个文件可能就零点几M。
3
动态分区插入数据,有Shuffle的情况下,上面的M值就变成了spark.sql.shuffle.partitions(默认值200)这个参数值,文件数的算法和范围和2中基本一致。
比如,为了防止Shuffle阶段的数据倾斜我们可以在上面的sql中加上 distribute by rand(),这样我们的执行计划就变成了,
InsertIntoHiveTable MetastoreRelation tpcds_1t_parquet, store_sales, Map(ss_sold_date_sk -> None), true, false
+- *Project [ss_sold_time_sk#4L, ss_item_sk#5L, ss_customer_sk#6L, ss_cdemo_sk#7L, ss_hdemo_sk#8L, ss_addr_sk#9L, ss_store_sk#10L, ss_promo_sk#11L, ss_ticket_number#12L, ss_quantity#13, ss_wholesale_cost#14, ss_list_price#15, ss_sales_price#16, ss_ext_discount_amt#17, ss_ext_sales_price#18, ss_ext_wholesale_cost#19, ss_ext_list_price#20, ss_ext_tax#21, ss_coupon_amt#22, ss_net_paid#23, ss_net_paid_inc_tax#24, ss_net_profit#25, ss_sold_date_sk#3L]
+- Exchange(coordinator id: 1080882047) hashpartitioning(_nondeterministic#49, 2048), coordinator[target post-shuffle partition size: 67108864]
+- *Project [ss_sold_time_sk#4L, ss_item_sk#5L, ss_customer_sk#6L, ss_cdemo_sk#7L, ss_hdemo_sk#8L, ss_addr_sk#9L, ss_store_sk#10L, ss_promo_sk#11L, ss_ticket_number#12L, ss_quantity#13, ss_wholesale_cost#14, ss_list_price#15, ss_sales_price#16, ss_ext_discount_amt#17, ss_ext_sales_price#18, ss_ext_wholesale_cost#19, ss_ext_list_price#20, ss_ext_tax#21, ss_coupon_amt#22, ss_net_paid#23, ss_net_paid_inc_tax#24, ss_net_profit#25, ss_sold_date_sk#3L, rand(4184439864130379921) AS _nondeterministic#49]
+- HiveTableScan [ss_sold_date_sk#3L, ss_sold_time_sk#4L, ss_item_sk#5L, ss_customer_sk#6L, ss_cdemo_sk#7L, ss_hdemo_sk#8L, ss_addr_sk#9L, ss_store_sk#10L, ss_promo_sk#11L, ss_ticket_number#12L, ss_quantity#13, ss_wholesale_cost#14, ss_list_price#15, ss_sales_price#16, ss_ext_discount_amt#17, ss_ext_sales_price#18, ss_ext_wholesale_cost#19, ss_ext_list_price#20, ss_ext_tax#21, ss_coupon_amt#22, ss_net_paid#23, ss_net_paid_inc_tax#24, ss_net_profit#25], MetastoreRelation tpcds_1t_ext, et_store_sales
这种情况下,这样我们的文件数妥妥的就是spark.sql.shuffle.partitions * N,因为rand函数一般会把数据打散的非常均匀。当spark.sql.shuffle.partitions设置过大时,小文件问题就产生了;当spark.sql.shuffle.partitions设置过小时,任务的并行度就下降了,性能随之受到影响。
最理想的情况,当然是根据分区字段进行shuffle,在上面的sql中加上distribute by ss_sold_date_sk。把同一分区的记录都哈希到同一个分区中去,由一个Spark的Task进行写入,这样的话只会产生N个文件,在我们的case中store_sales,在1825个分区下各种生成了一个数据文件。
但是这种情况下也容易出现数据倾斜的问题,比如双11的销售数据就很容易在这种情况下发生倾斜。
基于分区字段Shuffle可能出现数据倾斜
如上图所示,在我们插入store_sales时,就发生了null值的倾斜,大大的拖慢的数据入库的时间。
04如何解决Spark SQL产生小文件问
前面已经提到根据分区字段进行分区,除非每个分区下本身的数据较少,分区字段选择不合理,那么小文件问题基本上就不存在了,但是也有可能由于shuffle引入新的数据倾斜问题。
我们首先可以尝试是否可以将两者结合使用, 在之前的sql上加上distribute by ss_sold_date_sk,cast(rand() * 5 as int), 这个类似于我们处理数据倾斜问题时候给字段加上后缀的形式。如,
use tpcds_1t_parquet;
INSERT overwrite table store_sales partition
(
ss_sold_date_sk
)
SELECT ss_sold_time_sk,
ss_item_sk,
ss_customer_sk,
ss_cdemo_sk,
ss_hdemo_sk,
ss_addr_sk,
ss_store_sk,
ss_promo_sk,
ss_ticket_number,
ss_quantity,
ss_wholesale_cost,
ss_list_price,
ss_sales_price,
ss_ext_discount_amt,
ss_ext_sales_price,
ss_ext_wholesale_cost,
ss_ext_list_price,
ss_ext_tax,
ss_coupon_amt,
ss_net_paid,
ss_net_paid_inc_tax,
ss_net_profit,
ss_sold_date_sk
FROM tpcds_1t_ext.et_store_sales
distribute by ss_sold_date_sk, cast(rand() * 5 as int);
按照之前的推算,每个分区下将产生5个文件,同时null值倾斜部分的数据也被打散成五份进行计算,缓解了数据倾斜的问题 ,我们最终将得到1825 *5=9105个文件,如下所示
1825 9105 247111074494 /user/kyuubi/hive_db/tpcds_1t_parquet.db/store_sales
如果我们将5改得更小,文件数也会越少,但相应的倾斜key的计算时间也会上去。
在我们知道那个分区键倾斜的情况下,我们也可以将入库的SQL拆成几个部分,比如我们store_sales是因为null值倾斜,我们就可以通过where ss_sold_date_sk is not null 和 where ss_sold_date_sk is null 将原始数据分成两个部分。前者可以基于分区字段进行分区,如distribute by ss_sold_date_sk;后者可以基于随机值进行分区,distribute by cast(rand() * 5 as int), 这样可以静态的将null值部分分成五个文件。
FROM tpcds_1t_ext.et_store_sales
where ss_sold_date_sk is not null
distribute by ss_sold_date_sk;
FROM tpcds_1t_ext.et_store_sales
where ss_sold_date_sk is null
distribute by distribute by cast(rand() * 5 as int);
对于倾斜部分的数据,我们可以开启Spark SQL的自适应功能,spark.sql.adaptive.enabled=true来动态调整每个相当于Spark的reduce端task处理的数据量,这样我们就不需要人为的感知随机值的规模了,我们可以直接
FROM tpcds_1t_ext.et_store_sales
where ss_sold_date_sk is null
distribute by distribute by rand() ;
然后Spark在Shuffle 阶段会自动的帮我们将数据尽量的合并成spark.sql.adaptive.shuffle.targetPostShuffleInputSize(默认64m)的大小,以减少输出端写文件线程的总量,最后减少个数。
对于spark.sql.adaptive.shuffle.targetPostShuffleInputSize参数而言,我们也可以设置成为dfs.block.size的大小,这样可以做到和块对齐,文件大小可以设置的最为合理。
05总结
本文讲述的是如何在纯写SQL的场景下,如何用Spark SQL做数据导入时候,控制小文件的数量。
1、对于原始数据进行按照分区字段进行shuffle,可以规避小文件问题。但有可能引入数据倾斜的问题;
2、可以通过distribute by ss_sold_date_sk, cast(rand() * N as int),N值可以在文件数量和倾斜度之间做权衡
3、知道倾斜键的情况下,可以将原始数据分成几个部分处理,不倾斜的按照分区键shuffle,倾斜部分可以按照rand函数来shuffle
4、活用Spark SQL自适应功能,目前Spark 的各版本的Release中其实也就两个参数,设spark.sql.adaptive.enabled=true即可开启该功能,spark.sql.adaptive.shuffle.targetPostShuffleInputSize设置reduce任务处理文件的上限,配合结论3使用,解决小文件问题事半功倍。
5、对于Spark 2.4的用户,也可以使用HINT 详情请看 https://issues.apache.org/jira/browse/SPARK-24940。
- 点赞
- 收藏
- 关注作者
评论(0)