动态规划-背包是否装满

举报
兔老大 发表于 2021/04/27 00:06:03 2021/04/27
【摘要】 很简单但是需要特别注意的,一定不要错。 背包: 有n 种不同的物品,每个物品有两个属性,v体积,c价值,现在给一个体积为 m 的背包,问最多可带走多少价值的物品。       状态转移方程  dp[i][j]=max(dp[i-1][j],dp[i-1][j-v[i]]+c[i]) dp[i-1...

很简单但是需要特别注意的,一定不要错。

背包:
有n 种不同的物品,每个物品有两个属性,v体积,c价值,现在给一个体积为 m 的背包,问最多可带走多少价值的物品。
      状态转移方程  dp[i][j]=max(dp[i-1][j],dp[i-1][j-v[i]]+c[i])
dp[i-1][j]表示不放第i件物品的最大价值,dp[i-1][j-v[i]]+c[i]表示放第i件物品的最大价值;[i-1][j-v[i]]这个表示将    前i-1件物品放入空间为  j-v[i] 的背包中的最大价值。为啥要j-v[i] ?因为要放第i件物品,所以所剩空间就剩了      j-v[i].  所以[i-1][j-v[i]]+c[i]就表示放第i件物品的最大价值。

 

(1)背包不一定装满。
dp[j]记录的是前i件物品放入空间为j的背包中的最大价值!!!
要在一开始,让dp[1001]中的每个值为 0;

(2)背包刚好装满    

背包刚好装满需要注意:

要把f[j]  (表示刚好装满的最大价值) 这样初始化!

f[0]=0; f[1~n]=负无穷-inf

(注意:codeblocks中没有直接表示无穷的符号,inf是自己定义的)

因为这样就能是那些能够恰好装满背包的物品的值为正数!而那些不能恰好装满背包的物品 的值就为负数。

这样就容易区分了。

这样dp(n)(背包最多承重) == inf话,说明装不满,装满的话 如果要求装满最多的价值,直接输出dp【n】

文章来源: fantianzuo.blog.csdn.net,作者:兔老大RabbitMQ,版权归原作者所有,如需转载,请联系作者。

原文链接:fantianzuo.blog.csdn.net/article/details/81781734

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。