leetcode338 比特位计数
【摘要】 给定一个非负整数 num。对于 0 ≤ i ≤ num 范围中的每个数字 i ,计算其二进制数中的 1 的数目并将它们作为数组返回。
示例 1:
输入: 2 输出: [0,1,1] 示例 2:
输入: 5 输出: [0,1,1,2,1,2] 进阶:
给出时间复杂度为O(n*sizeof(integer))的解答非常容易...
给定一个非负整数 num。对于 0 ≤ i ≤ num 范围中的每个数字 i ,计算其二进制数中的 1 的数目并将它们作为数组返回。
示例 1:
输入: 2
输出: [0,1,1]
示例 2:
输入: 5
输出: [0,1,1,2,1,2]
进阶:
给出时间复杂度为O(n*sizeof(integer))的解答非常容易。但你可以在线性时间O(n)内用一趟扫描做到吗?
要求算法的空间复杂度为O(n)。
你能进一步完善解法吗?要求在C++或任何其他语言中不使用任何内置函数(如 C++ 中的 __builtin_popcount)来执行此操作。
思路:记录之前的答案,对于现在的数字:除了最高位,剩下的数字已经被算出来了,答案就等于最高位(1或0)+之前的答案即可。
-
public class Solution {
-
public int[] countBits(int num) {
-
int[] ans = new int[num + 1];
-
for (int i = 1; i <= num; ++i)
-
ans[i] = ans[i >> 1] + (i % 2);
-
return ans;
-
}
-
}
文章来源: fantianzuo.blog.csdn.net,作者:兔老大RabbitMQ,版权归原作者所有,如需转载,请联系作者。
原文链接:fantianzuo.blog.csdn.net/article/details/103377111
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)