ML&DL&RL:ML&DL相关概念的原始英文解释——对理解最初的ML和DL的相关概念的定义非常有用

举报
一个处女座的程序猿 发表于 2021/04/03 02:00:08 2021/04/03
【摘要】 ML&DL:ML&DL相关概念的原始英文解释——对理解最初的ML和DL的相关概念的定义非常有用   目录 ML分类概念 1、Parametric and Nonparametric Algorithms   ML分类概念 1、Parametric and Nonparametric Algorithms What is a parametric machin...

ML&DL:ML&DL相关概念的原始英文解释——对理解最初的ML和DL的相关概念的定义非常有用

 

目录

ML分类概念

1、Parametric and Nonparametric Algorithms


 

ML分类概念

1、Parametric and Nonparametric Algorithms

What is a parametric machine learning algorithm and how is it different from a nonparametric machine learning algorithm?

1、Assumptions can greatly simplify the learning process, but can also limit what can be learned. Algorithms that simplify the function to a known form are called parametric machine learning algorithms.
(1)、The algorithms involve two steps:
A、Select a form for the function.
B、Learn the coefficients for the function from the training data.
Some examples of parametric machine learning algorithms are Linear Regression and Logistic Regression.

2、Algorithms that do not make strong assumptions about the form of the mapping function are called nonparametric machine learning algorithms. By not making assumptions, they are free to learn any functional form from the training data.
(1)、Non-parametric methods are often more flexible, achieve better accuracy but require a lot more data and training time.
(2)、Examples of nonparametric algorithms include Support Vector Machines, Neural Networks and Decision Trees.

相关文章
machinelearningmastery https://.com/machine-learning-algorithms-mini-course/

 

文章来源: yunyaniu.blog.csdn.net,作者:一个处女座的程序猿,版权归原作者所有,如需转载,请联系作者。

原文链接:yunyaniu.blog.csdn.net/article/details/84330828

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。