ML之分类预测:基于sklearn库的七八种机器学习算法利用糖尿病(diabetes)数据集(8→1)实现二分类预测
ML之分类预测:基于sklearn库的七八种机器学习算法利用糖尿病(diabetes)数据集(8→1)实现二分类预测
目录
输出结果
数据集展示
输出结果
1、k-NN
k-NN:Accuracy of K-NN classifier on training set: 0.79
k-NN:Accuracy of K-NN classifier on test set: 0.78
2、LoR
#
LoR:C1 Training set accuracy: 0.781
LoR:C1 Test set accuracy: 0.771
LoR:C100 Training set accuracy: 0.785
LoR:C100 Test set accuracy: 0.766
LoR:C001 Training set accuracy: 0.700
LoR:C001 Test set accuracy: 0.703
4、DT
DT:Accuracy on training set: 1.000
DT:Accuracy on test set: 0.714
DT:Accuracy on training set: 0.773
DT:Accuracy on test set: 0.740
5、RF
RF:Accuracy on training set: 1.000
RF:Accuracy on test set: 0.786
RF:max_depth=3 Accuracy on training set: 0.800
RF:max_depth=3 Accuracy on test set: 0.755
6、GB
GB:Accuracy on training set: 0.917
GB:Accuracy on test set: 0.792
GB:Accuracy on training set: 0.804
GB:Accuracy on test set: 0.781
GB:Accuracy on training set: 0.802
GB:Accuracy on test set: 0.776
7、SVM
SVM:Accuracy on training set: 1.00
SVM:Accuracy on test set: 0.65
SVM:MinMaxScaler Accuracy on training set: 0.77
SVM:MinMaxScaler Accuracy on test set: 0.77
SVM:C=500 Accuracy on training set: 0.790
SVM:C=500 Accuracy on test set: 0.792
SVM:C=1000 Accuracy on training set: 0.790
SVM:C=1000 Accuracy on test set: 0.797
SVM:C=2000 Accuracy on training set: 0.800
SVM:C=2000 Accuracy on test set: 0.797
8、NN
利用多层神经网络
NN:Data standardization—Accuracy on training set: 0.823
NN:Data standardization—Accuracy on test set: 0.802
NN:Data standardization(max_iter=1000)—Accuracy on training set: 0.877
NN:Data standardization(max_iter=1000)—Accuracy on test set: 0.755
NN:Data standardization(max_iter=1000,alpha=1)—Accuracy on training set: 0.795
NN:Data standardization(max_iter=1000,alpha=1)—Accuracy on test set: 0.792
设计思路
相关文章
ML之Classification:基于sklearn库的七八种机器学习算法利用糖尿病(diabetes)数据集(8→1)实现二分类预测
文章来源: yunyaniu.blog.csdn.net,作者:一个处女座的程序猿,版权归原作者所有,如需转载,请联系作者。
原文链接:yunyaniu.blog.csdn.net/article/details/80731565
- 点赞
- 收藏
- 关注作者
评论(0)