CV之IG:基于CNN网络架构+ResNet网络进行DIY图像生成网络
【摘要】 CV之IG:基于CNN网络架构+ResNet网络进行DIY图像生成网络
目录
设计思路
实现代码
设计思路
实现代码
# 定义图像生成网络:image, training,两个参数 # Less border effects when padding a little before passing through .. ...
CV之IG:基于CNN网络架构+ResNet网络进行DIY图像生成网络
目录
设计思路
实现代码
-
# 定义图像生成网络:image, training,两个参数
-
-
# Less border effects when padding a little before passing through ..
-
image = tf.pad(image, [[0, 0], [10, 10], [10, 10], [0, 0]], mode='REFLECT')
-
-
with tf.variable_scope('conv1'):
-
conv1 = relu(instance_norm(conv2d(image, 3, 32, 9, 1)))
-
with tf.variable_scope('conv2'):
-
conv2 = relu(instance_norm(conv2d(conv1, 32, 64, 3, 2)))
-
with tf.variable_scope('conv3'):
-
conv3 = relu(instance_norm(conv2d(conv2, 64, 128, 3, 2)))
-
-
with tf.variable_scope('res1'):
-
res1 = residual(conv3, 128, 3, 1)
-
with tf.variable_scope('res2'):
-
res2 = residual(res1, 128, 3, 1)
-
with tf.variable_scope('res3'):
-
res3 = residual(res2, 128, 3, 1)
-
with tf.variable_scope('res4'):
-
res4 = residual(res3, 128, 3, 1)
-
with tf.variable_scope('res5'):
-
res5 = residual(res4, 128, 3, 1)
-
-
-
# print(res5.get_shape())
-
with tf.variable_scope('deconv1'):
-
# deconv1 = relu(instance_norm(conv2d_transpose(res5, 128, 64, 3, 2)))
-
deconv1 = relu(instance_norm(resize_conv2d(res5, 128, 64, 3, 2, training)))
-
with tf.variable_scope('deconv2'):
-
# deconv2 = relu(instance_norm(conv2d_transpose(deconv1, 64, 32, 3, 2)))
-
deconv2 = relu(instance_norm(resize_conv2d(deconv1, 64, 32, 3, 2, training)))
-
with tf.variable_scope('deconv3'):
-
# deconv_test = relu(instance_norm(conv2d(deconv2, 32, 32, 2, 1)))
-
deconv3 = tf.nn.tanh(instance_norm(conv2d(deconv2, 32, 3, 9, 1)))
-
-
-
y = (deconv3 + 1) * 127.5
-
-
-
height = tf.shape(y)[1]
-
width = tf.shape(y)[2]
-
y = tf.slice(y, [0, 10, 10, 0], tf.stack([-1, height - 20, width - 20, -1]))
-
-
return y
文章来源: yunyaniu.blog.csdn.net,作者:一个处女座的程序猿,版权归原作者所有,如需转载,请联系作者。
原文链接:yunyaniu.blog.csdn.net/article/details/82941106
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)