MAT之PSO:利用PSO算法优化二元函数,寻找最优个体适应度
【摘要】 MAT之PSO:利用PSO算法优化二元函数,寻找最优个体适应度
目录
实现结果
设计代码
实现结果
设计代码
figure[x,y] = meshgrid(-5:0.1:5,-5:0.1:5);z = x.^2 + y.^2 - 10*cos(2*pi*x) - 10*cos(2*pi*y) + 20;mesh(x,y,z...
MAT之PSO:利用PSO算法优化二元函数,寻找最优个体适应度
目录
实现结果
设计代码
-
figure
-
[x,y] = meshgrid(-5:0.1:5,-5:0.1:5);
-
z = x.^2 + y.^2 - 10*cos(2*pi*x) - 10*cos(2*pi*y) + 20;
-
mesh(x,y,z)
-
hold on
-
-
c1 = 1.49445;
-
c2 = 1.49445;
-
-
maxgen = 1000;
-
sizepop = 100;
-
-
Vmax = 1;
-
Vmin = -1;
-
popmax = 5;
-
popmin = -5;
-
-
for i = 1:sizepop
-
pop(i,:) = 5*rands(1,2);
-
V(i,:) = rands(1,2);
-
fitness(i) = fun(pop(i,:));
-
end
-
-
[bestfitness bestindex] = max(fitness);
-
zbest = pop(bestindex,:);
-
gbest = pop;
-
fitnessgbest = fitness;
-
fitnesszbest = bestfitness;
-
-
for i = 1:maxgen
-
-
for j = 1:sizepop
-
V(j,:) = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:));
-
V(j,find(V(j,:)>Vmax)) = Vmax;
-
V(j,find(V(j,:)<Vmin)) = Vmin;
-
-
pop(j,:) = pop(j,:) + V(j,:);
-
pop(j,find(pop(j,:)>popmax)) = popmax;
-
pop(j,find(pop(j,:)<popmin)) = popmin;
-
-
fitness(j) = fun(pop(j,:));
-
end
-
-
for j = 1:sizepop
-
if fitness(j) > fitnessgbest(j)
-
gbest(j,:) = pop(j,:);
-
fitnessgbest(j) = fitness(j);
-
end
-
-
if fitness(j) > fitnesszbest
-
zbest = pop(j,:);
-
fitnesszbest = fitness(j);
-
end
-
end
-
yy(i) = fitnesszbest;
-
end
-
[fitnesszbest, zbest]
-
plot3(zbest(1), zbest(2), fitnesszbest,'ro','linewidth',1.5)
-
title('粒子群算法:绘制的目标函数三维网格图,红圈为最优点—Jason niu')
-
-
figure
-
plot(yy)
-
title('PSO:利用粒子群算法实现对目标函数寻找最优个体适应度—Jason niu','fontsize',12);
-
xlabel('进化代数','fontsize',12);ylabel('适应度','fontsize',12);
相关文章
PSO:利用PSO算法优化二元函数,寻找最优个体适应度
文章来源: yunyaniu.blog.csdn.net,作者:一个处女座的程序猿,版权归原作者所有,如需转载,请联系作者。
原文链接:yunyaniu.blog.csdn.net/article/details/79380986
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)