ML之LoR:逻辑回归LoR算法的简介、应用、经典案例之详细攻略

举报
一个处女座的程序猿 发表于 2021/03/28 02:35:02 2021/03/28
【摘要】 ML之LoR:逻辑回归LoR算法的简介、应用、经典案例之详细攻略     目录 逻辑回归LoR算法的简介 逻辑回归LoR算法的应用 1、逻辑回归可视化 逻辑回归LoR算法的经典案例       逻辑回归LoR算法的简介         逻辑回归最适合二进制分类(y = 0或1的数据集,其中1表示默认类)。例如:在预测事件是否发生时,发生的事件被分类为...

ML之LoR:逻辑回归LoR算法的简介、应用、经典案例之详细攻略

 

 

目录

逻辑回归LoR算法的简介

逻辑回归LoR算法的应用

1、逻辑回归可视化

逻辑回归LoR算法的经典案例


 

 

 

逻辑回归LoR算法的简介

        逻辑回归最适合二进制分类(y = 0或1的数据集,其中1表示默认类)。例如:在预测事件是否发生时,发生的事件被分类为1。在预测人会生病或不生病,生病的实例记为1)。它是以其中使用的变换函数命名的,称为逻辑函数h(x) =1 / (1+e-x),它是一个S形曲线。
        在逻辑回归中,输出是以缺省类别的概率形式出现的。因为这是一个概率,所以输出在0-1的范围内。输出(y值)通过对数转换x值,使用对数函数h(x) = 1 /(1+e-x)来生成。然后应用一个阈值来强制这个概率进入二元分类。

        上图判断了肿瘤是恶性还是良性。默认变量是y = 1(肿瘤=恶性);x变量可以是肿瘤的信息,例如肿瘤的尺寸。如图所示,逻辑函数将数据集的各种实例的x值转换成0到1的范围。如果概率超过阈值0.5(由水平线示出),则将肿瘤分类为恶性。

        逻辑回归的目标是使用训练数据来找到系数b0和b1的值,以使预测结果与实际结果之间的误差最小化。这些系数是使用最大似然估计来计算的。

 

 

逻辑回归LoR算法的应用

1、逻辑回归可视化


 

 

逻辑回归LoR算法的经典案例

TF之LoR:基于tensorflow利用逻辑回归算LoR法实现手写数字图片识别提高准确率
ML之LoR:LoR之二分类之线性决策算法实现根据两课成绩分数~预测期末通过率(合格还是不合格)
ML之LoR:利用LoR二分类之非线性决策算法案例应用之划分正负样本

 

 

 

 

 

 

 

文章来源: yunyaniu.blog.csdn.net,作者:一个处女座的程序猿,版权归原作者所有,如需转载,请联系作者。

原文链接:yunyaniu.blog.csdn.net/article/details/78942039

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。