DL之NN:利用(本地数据集50000张数据集)调用自定义神经网络network.py实现手写数字图片识别94%准确率
【摘要】 DL之NN:利用(本地数据集50000张数据集)调用自定义神经网络network.py实现手写数字图片识别94%准确率
目录
输出结果
代码设计
输出结果
更新……
代码设计
import mnist_loaderimport net...
DL之NN:利用(本地数据集50000张数据集)调用自定义神经网络network.py实现手写数字图片识别94%准确率
目录
输出结果
更新……
代码设计
-
import mnist_loader
-
import network
-
-
training_data, validation_data, test_data = mnist_loader.load_data_wrapper()
-
-
print("training_data")
-
print(type(training_data))
-
print(list(training_data))
-
print(training_data[0][0].shape)
-
print(training_data[0][1].shape)
-
-
net = network.Network([784, 30, 10])
-
net.SGD(training_data, 30, 10, 3.0, test_data=test_data)
-
import random
-
-
import numpy as np
-
-
class Network(object):
-
-
def __init__(self, sizes):
-
"""The list ``sizes`` contains the number of neurons in the
-
respective layers of the network. For example, if the list
-
was [2, 3, 1] then it would be a three-layer network, with the
-
first layer containing 2 neurons, the second layer 3 neurons,
-
and the third layer 1 neuron. The biases and weights for the
-
network are initialized randomly, using a Gaussian
-
distribution with mean 0, and variance 1. Note that the first
-
layer is assumed to be an input layer, and by convention we
-
won't set any biases for those neurons, since biases are only
-
ever used in computing the outputs from later layers."""
-
self.num_layers = len(sizes)
-
self.sizes = sizes
-
self.biases = [np.random.randn(y, 1) for y in sizes[1:]]
-
-
self.weights = [np.random.randn(y, x) for x, y in zip(sizes[:-1], sizes[1:])]
-
-
-
def feedforward(self, a):
-
"""Return the output of the network if ``a`` is input."""
-
for b, w in zip(self.biases, self.weights):
-
a = sigmoid(np.dot(w, a)+b)
-
return a
-
-
def SGD(self, training_data, epochs, mini_batch_size, eta, test_data=None):
-
"""Train the neural network using mini-batch stochastic
-
gradient descent. The ``training_data`` is a list of tuples
-
``(x, y)`` representing the training inputs and the desired
-
outputs. The other non-optional parameters are
-
self-explanatory. If ``test_data`` is provided then the
-
network will be evaluated against the test data after each
-
epoch, and partial progress printed out. This is useful for
-
tracking progress, but slows things down substantially."""
-
if test_data:
-
n_test = len(test_data)
-
n = len(training_data)
-
for j in xrange(epochs):
-
random.shuffle(training_data)
-
mini_batches = [training_data[k:k+mini_batch_size]
-
for k in xrange(0, n, mini_batch_size)]
-
for mini_batch in mini_batches:
-
self.update_mini_batch(mini_batch, eta)
-
if test_data:
-
print ("Epoch {0}: {1} / {2}".format(j, self.evaluate(test_data), n_test))
-
-
else:
-
print ("Epoch {0} complete".format(j))
-
-
def update_mini_batch(self, mini_batch, eta):
-
"""Update the network's weights and biases by applying
-
gradient descent using backpropagation to a single mini batch.
-
The ``mini_batch`` is a list of tuples ``(x, y)``, and ``eta``
-
is the learning rate."""
-
nabla_b = [np.zeros(b.shape) for b in self.biases]
-
nabla_w = [np.zeros(w.shape) for w in self.weights]
-
for x, y in mini_batch:
-
delta_nabla_b, delta_nabla_w = self.backprop(x, y)
-
nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
-
nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
-
self.weights = [w-(eta/len(mini_batch))*nw for w, nw in zip(self.weights, nabla_w)]
-
-
self.biases = [b-(eta/len(mini_batch))*nb for b, nb in zip(self.biases, nabla_b)]
-
-
def backprop(self, x, y):
-
"""Return a tuple ``(nabla_b, nabla_w)`` representing the
-
gradient for the cost function C_x. ``nabla_b`` and
-
``nabla_w`` are layer-by-layer lists of numpy arrays, similar
-
to ``self.biases`` and ``self.weights``."""
-
nabla_b = [np.zeros(b.shape) for b in self.biases]
-
nabla_w = [np.zeros(w.shape) for w in self.weights]
-
# feedforward
-
activation = x
-
activations = [x] # list to store all the activations, layer by layer
-
zs = [] # list to store all the z vectors, layer by layer
-
for b, w in zip(self.biases, self.weights):
-
z = np.dot(w, activation)+b
-
zs.append(z)
-
activation = sigmoid(z)
-
activations.append(activation)
-
# backward pass
-
delta = self.cost_derivative(activations[-1], y) * \
-
sigmoid_prime(zs[-1])
-
nabla_b[-1] = delta
-
nabla_w[-1] = np.dot(delta, activations[-2].transpose())
-
# Note that the variable l in the loop below is used a little
-
# differently to the notation in Chapter 2 of the book. Here,
-
# l = 1 means the last layer of neurons, l = 2 is the
-
# second-last layer, and so on. It's a renumbering of the
-
# scheme in the book, used here to take advantage of the fact
-
# that Python can use negative indices in lists.
-
for l in xrange(2, self.num_layers):
-
z = zs[-l]
-
sp = sigmoid_prime(z)
-
delta = np.dot(self.weights[-l+1].transpose(), delta) * sp
-
nabla_b[-l] = delta
-
nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())
-
return (nabla_b, nabla_w)
-
-
def evaluate(self, test_data):#评估,
-
"""Return the number of test inputs for which the neural
-
network outputs the correct result. Note that the neural
-
network's output is assumed to be the index of whichever
-
neuron in the final layer has the highest activation."""
-
test_results = [(np.argmax(self.feedforward(x)), y)
-
for (x, y) in test_data]
-
return sum(int(x == y) for (x, y) in test_results)
-
-
def cost_derivative(self, output_activations, y):
-
"""Return the vector of partial derivatives \partial C_x /
-
\partial a for the output activations."""
-
return (output_activations-y)
-
-
-
def sigmoid(z):
-
"""The sigmoid function."""
-
return 1.0/(1.0+np.exp(-z))
-
-
def sigmoid_prime(z):
-
"""Derivative of the sigmoid function."""
-
return sigmoid(z)*(1-sigmoid(z))
-
import pickle as cPickle
-
import gzip
-
-
import numpy as np
-
-
def load_data():
-
"""Return the MNIST data as a tuple containing the training data,
-
the validation data, and the test data.
-
-
The ``training_data`` is returned as a tuple with two entries.
-
The first entry contains the actual training images. This is a
-
numpy ndarray with 50,000 entries. Each entry is, in turn, a
-
numpy ndarray with 784 values, representing the 28 * 28 = 784
-
pixels in a single MNIST image.
-
-
The second entry in the ``training_data`` tuple is a numpy ndarray
-
containing 50,000 entries. Those entries are just the digit
-
values (0...9) for the corresponding images contained in the first
-
entry of the tuple.
-
-
The ``validation_data`` and ``test_data`` are similar, except
-
each contains only 10,000 images.
-
-
This is a nice data format, but for use in neural networks it's
-
helpful to modify the format of the ``training_data`` a little.
-
That's done in the wrapper function ``load_data_wrapper()``, see
-
below.
-
"""
-
f = gzip.open('../data/mnist.pkl.gz', 'rb')
-
training_data, validation_data, test_data = cPickle.load(f,encoding='bytes') #(f,encoding='bytes')
-
f.close()
-
return (training_data, validation_data, test_data)
-
-
def load_data_wrapper():
-
"""Return a tuple containing ``(training_data, validation_data,
-
test_data)``. Based on ``load_data``, but the format is more
-
convenient for use in our implementation of neural networks.
-
-
In particular, ``training_data`` is a list containing 50,000
-
2-tuples ``(x, y)``. ``x`` is a 784-dimensional numpy.ndarray
-
containing the input image. ``y`` is a 10-dimensional
-
numpy.ndarray representing the unit vector corresponding to the
-
correct digit for ``x``.
-
-
``validation_data`` and ``test_data`` are lists containing 10,000
-
2-tuples ``(x, y)``. In each case, ``x`` is a 784-dimensional
-
numpy.ndarry containing the input image, and ``y`` is the
-
corresponding classification, i.e., the digit values (integers)
-
corresponding to ``x``.
-
-
Obviously, this means we're using slightly different formats for
-
the training data and the validation / test data. These formats
-
turn out to be the most convenient for use in our neural network
-
code."""
-
tr_d, va_d, te_d = load_data()
-
training_inputs = [np.reshape(x, (784, 1)) for x in tr_d[0]]
-
training_results = [vectorized_result(y) for y in tr_d[1]]
-
training_data = zip(training_inputs, training_results)
-
validation_inputs = [np.reshape(x, (784, 1)) for x in va_d[0]]
-
validation_data = zip(validation_inputs, va_d[1])
-
test_inputs = [np.reshape(x, (784, 1)) for x in te_d[0]]
-
test_data = zip(test_inputs, te_d[1])
-
return (training_data, validation_data, test_data)
-
-
def vectorized_result(j):
-
"""Return a 10-dimensional unit vector with a 1.0 in the jth
-
position and zeroes elsewhere. This is used to convert a digit
-
(0...9) into a corresponding desired output from the neural
-
network."""
-
e = np.zeros((10, 1))
-
e[j] = 1.0
-
return e
DL之NN:利用(本地数据集50000张数据集)调用自定义神经网络network.py实现手写图片识别94%
文章来源: yunyaniu.blog.csdn.net,作者:一个处女座的程序猿,版权归原作者所有,如需转载,请联系作者。
原文链接:yunyaniu.blog.csdn.net/article/details/80022781
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)