图的应用——关键路径

举报
ruochen 发表于 2021/03/28 00:46:10 2021/03/28
【摘要】 AOE网AOE网的性质AOE网所能解决的问题 关键路径术语算法设计算法要点算法实现 拓扑排序 AOE网 在一个表示工程的带权有向图中,用顶点表示事件,用有向边表示活动,边上的权值表示活动的持续时间,称这样的有向图叫做边表示活动的网,简称AOE网。AOE网中没有入边的顶点称为始点(或源点),没有出边的顶点称为终点(或汇点)。 AO...

拓扑排序

AOE网

  • 在一个表示工程的带权有向图中,用顶点表示事件,用有向边表示活动,边上的权值表示活动的持续时间,称这样的有向图叫做边表示活动的网,简称AOE网。AOE网中没有入边的顶点称为始点(或源点),没有出边的顶点称为终点(或汇点)。

AOE网的性质

  • 只有在某顶点所代表的事件发生后,从该顶点出发的各活动才能开始;
  • 只有在进入某顶点的各活动都结束,该顶点所代表的事件才能发生。

在这里插入图片描述

AOE网所能解决的问题

  • 完成整个工程至少需要多少时间?
  • 为缩短完成工程所需的时间, 应当加快哪些活动?

关键路径

关键路径长度是整个工程所需的最短工期

  • 关键路径:在AOE网中,从始点到终点具有最大路径长度(该路径上的各个活动所持续的时间之和)的路径称为关键路径。
  • 关键活动:关键路径上的活动称为关键活动。

术语

  • 源点:表示整个工程的开始点,也称起点
  • 收点:表示整个工程的结束点,也称汇点
  • 事件结点:单位时间,表示的是时刻
  • 活动(有向边):它的权值定义为活动进行所需要的时间。方向表示起始结点事件先发生,而终止结点事件才能发生
  • 事件的最早发生时间(Ve(j)):从起点到本结点的最长的路径。意味着事件最早能够发生的时刻
  • 事件的最迟发生时间(V l (j)):不影响工程的如期完工,本结点事件必须发发生的时刻
  • 活动的最早开始时间:e( ai ) = Ve( j )
  • 活动的最迟开始时间:l( ai ) = V l( k ) - dut( j , k )
  • 事件的最早发生时间(Ve(j)):从起点到本结点的最长的路径。意味着事件最早能够发生的时刻
  • 事件的最迟发生时间(V l (j)):不影响工程的如期完工,本结点事件必须发发生的时刻
  • 活动的最早开始时间:e(ai ) = Ve( j )
  • 活动的最迟开始时间: l (ai ) = V l( k ) - dut( j , k )
  • 关键活动:最早开始时间 = 最迟开始时间的活动
  • 关键路径:从源点到收点的最长的一条路径,或者全部由关键活动构成的路径

算法设计

  • 事件(顶点) 的 最早发生时间 ve(j)
    ve(j) = 从源点到顶点j的最长路径长度

    • ve(源点) = 0
    • ve(j) = Max{ve(i) + dut(<i, j>)} (<i, j>∈T)
      T是所有以第j个顶点为弧头的弧的集合
  • 事件(顶点) 的 最迟发生时间 vl(k)
    vl(k) = 从顶点k到汇点的最短路径长度

    • vl(汇点) = ve(汇点)
    • vl(i) = Min{vl(j) – dut(<i, j>)} (<i, j>∈S)
      S是所有以第i个顶点为弧尾的弧的集合

假设第 i 条弧为 <j, k>, 则 对第 i 项活动言:

  • 活动(弧)”的 最早开始时间 e(i)
    e(i) = ve(j)
  • 活动(弧)的 最迟开始时间 l(i)
    l(i) = vl(k) – dut(<j,k>)

在这里插入图片描述
在这里插入图片描述

算法要点

  • ve的顺序应该是按拓扑有序的次序
  • vl的顺序应该是按拓扑逆序的次序
  • 拓扑逆序序列即为拓扑有序序列的逆序列,应该在拓扑排序的过程中,另设一个 “栈” 记下拓扑有序序列

算法实现

Status TopologicalOrder(ALGraph G, SqStack &T){
	FindInDegree(G, indegree);  // 对各顶点求入度
	InitStack(S);
	InitStack(T);
	for(i = 0; i < G.vexnum; i++)
		if(!indegree[i]) Push(S, i);
	count = 0;  // 对输出顶点计数
	for(i = 0; i < G.vexnum; i++)
		ve[i] = 0;
	while(!StackEmpty(S)){
		Pop(S, j);
		Push(T, j);
		++count;
		for(p = G.vertices[j].firstarc; p; p = p->nextarc){ k = p->adjvex; if(!(--indegree[k])) Push(S, k); if(ve[j] + *(p->info) > ve[k]) // 修改ve[j] ve[k] = ve[j] + *(p->info);
		}
	}
	if(count < G.vexnum){
		cout << "图中有回路!";
		return ERROR;
	}
}

void Criticalpath(ALGraph G){
	// G为有向网络,输出G的各项关键活动
	for(i = 0; i < G.vexnum; i++)
		vl[i] = ve[G.vexnum - 1]
	while(!StackEmpty(T))
		for(Pop(T, j), p = G.vertices[j].firstarc; p; p = p->nextarc){ k = p->adjvex; dut = *(p->info); if(vl[k] - dut < vl[j]) vl[j] = vl[k] - dut; // dut是事件vj到事件vk活动的持续时间
		}
	for(j = 0; j < G.vexnum; ++j){
		// 求活动的最早开始时间ee、最迟开始时间el和关键活动
		for(p = G.vertices[j].firstarc; p; p = p->nextarc){ k = p->adjvex; dut = *(p->info); ee = ve[j]; el = vl[k] - dut; tag = (ee == el)?'*':' '; cout << j << " " << k << " " << dut <<" " << ee << " " << el << " " << tag << endl;
		}
	}
}

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52

文章来源: ruochen.blog.csdn.net,作者:若尘,版权归原作者所有,如需转载,请联系作者。

原文链接:ruochen.blog.csdn.net/article/details/103977540

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。