Hive基础增强-(窗口函数)

举报
bigdata张凯翔 发表于 2021/03/27 23:46:25 2021/03/27
【摘要】 一.原始数据 jack,2017-01-01,10 tony,2017-01-02,15 jack,2017-02-03,23 tony,2017-01-04,29 jack,2017-01-05,46 jack,2017-04-06,42 - tony,2017-01-07,50 jack,2017-01-08,55 mart,2017-04-08,62 - mart,...

一.原始数据

 jack,2017-01-01,10 tony,2017-01-02,15 jack,2017-02-03,23 tony,2017-01-04,29 jack,2017-01-05,46 jack,2017-04-06,42  - tony,2017-01-07,50 jack,2017-01-08,55 mart,2017-04-08,62  - mart,2017-04-09,68  - neil,2017-05-10,12 mart,2017-04-11,75  - neil,2017-06-12,80 mart,2017-04-13,94  -

执行如下函数后分别得到不同的结果,以此来理解开窗函数的使用方法

select name,count(*)
from business
where month(orderdate)='4'
group by name;

+-------+------+--+
| name  | _c1  |
+-------+------+--+
| jack  | 1 |
| mart  | 4 |
+-------+------+--+
select name,count(*) over()
from business
where month(orderdate)='4'
group by name;

+-------+-----------------+--+
| name  | count_window_0  |
+-------+-----------------+--+
| jack  | 2 |
| mart  | 2 |
+-------+-----------------+--+
select name,count(*) over()
from business
where month(orderdate)='4';
+-------+-----------------+--+
| name  | count_window_0  |
+-------+-----------------+--+
| jack  | 5 |
| mart  | 5 |
| mart  | 5 |
| mart  | 5 |
| mart  | 5 |
+-------+-----------------+--+
select name,count(*) over(partition by name)
from business
where month(orderdate)='4'
group by name;

+-------+-----------------+--+
| name  | count_window_0  |
+-------+-----------------+--+
| jack  | 1 |
| mart  | 1 |
+-------+-----------------+--+


select name,count(*) over(partition by name)
from business
where month(orderdate)='4'

+-------+-----------------+--+
| name  | count_window_0  |
+-------+-----------------+--+
| jack  | 1 |
| mart  | 4 |
| mart  | 4 |
| mart  | 4 |
| mart  | 4 |
+-------+-----------------+--+

二.原始数据

相关函数说明
OVER():指定分析函数工作的数据窗口大小,这个数据窗口大小可能会随着行的变而变化。
CURRENT ROW:当前行
n PRECEDING:往前n行数据
n FOLLOWING:往后n行数据
UNBOUNDED:起点,UNBOUNDED PRECEDING 表示从前面的起点, UNBOUNDED FOLLOWING表示到后面的终点
LAG(col,n,default_val):往前第n行数据
LEAD(col,n, default_val):往后第n行数据
NTILE(n):把有序分区中的行分发到指定数据的组中,各个组有编号,编号从1开始,对于每一行,NTILE返回此行所属的组的编号。注意:n必须为int类型

 name|orderdate|cost jack,2017-01-01,10 tony,2017-01-02,15 jack,2017-02-03,23 tony,2017-01-04,29 jack,2017-01-05,46 jack,2017-04-06,42 tony,2017-01-07,50 jack,2017-01-08,55 mart,2017-04-08,62 mart,2017-04-09,68 neil,2017-05-10,12 mart,2017-04-11,75 neil,2017-06-12,80 mart,2017-04-13,94
create table business(
name string,orderdate string,cost int)
row format delimited fields terminated by ','
load data local inpath "/opt/module/datas/business.txt"
into table business;

##按需求查询
1.查询在20174月购买过的顾客及总人数
select name,count(*) over()
from business
where subString(orderdate,1,7)='2017-04'
group by name;
2.查询顾客的购买明细及月购买总额
select name,sum(cost) over(partition by month(orderdate))
from business
3.上述的场景,将每个顾客的cost按照日期进行累加
select name,orderdate,cost,
sum(cost) over() as sample1, --将所有行相加
sum(cost) over(partition by name) as sample2,--按name分组,组内数据相加
sum(cost) over(partition by name order by orderdate) as sample3,--按name分组,组内数据累加 
sum(cost) over(partition by name order by orderdate rows between UNBOUNDED PRECEDING and current row) as sample4,--和sample3一样,由起点到当前行的聚合
sum(cost) over(partition by name order by orderdate rows between 1 PRECEDING AND current row) as sample5,--当前行和前面一行做聚合 
sum(cost) over(partition by name order by orderdate rows between 1 PRECEDING and 1 FOLLOWING) as simple6,--当前行和前边一行及后面一行 
sum(cost) over(partition by name order by orderdate rows between current row and UNBOUNDED FOLLOWING) as sample7 --当前行及后面所有行
from business

rows必须跟在Order by 子句之后,对排序的结果进行限制,使用固定的行数来限制分区中的数据行数量
4.查看顾客上次的购买时间(lag 往前n行)

select name,orderdate,cost,
lag(orderdate,1,'1970-01-01') over(partition by name order by orderdate ) as time1,
lag(orderdate,2) over(partition by name order by orderdate) as time2
from business;

结果:
name orderdate   cost time1   time2
jack 2017-01-01  10  1970-01-01  NULL
jack 2017-01-05  46  2017-01-01  NULL
jack 2017-01-08  55  2017-01-05  2017-01-01
jack 2017-02-03  23  2017-01-08  2017-01-05
jack 2017-04-06  42  2017-02-03  2017-01-08
mart 2017-04-08  62  1970-01-01  NULL
mart 2017-04-09  68  2017-04-08  NULL
mart 2017-04-11  75  2017-04-09  2017-04-08
mart 2017-04-13  94  2017-04-11  2017-04-09
neil 2017-05-10  12  1970-01-01  NULL
neil 2017-06-12  80  2017-05-10  NULL
tony 2017-01-02  15  1970-01-01  NULL
tony 2017-01-04  29  2017-01-02  NULL
tony 2017-01-07  50  2017-01-04  2017-01-02

NTILE(n):把有序分区中的行分发到指定数据的组中,
各个组有编号,编号从1开始,对于每一行,NTILE返回此行所属的组的编号。
注意:n必须为int类型。

查询前20%时间的订单信息: select * from( select name,orderdate,cost,ntile(5) over(order by orderdate) sorted from business ) t where sorted = 1;

三.Rank

1.函数说明

Rank() 排序相同时会重复,总数不会变
DENSE_RANK() 排序相同时会重复,总数会减少
ROW_NUMBER() 会根据顺序计算

数据准备:

name subject score
孙悟空 语文  87
孙悟空 数学  95
孙悟空 英语  68
大海  语文  94
大海  数学  56
大海  英语  84
宋宋  语文  64
宋宋  数学  86
宋宋  英语  84
婷婷  语文  65
婷婷  数学  85
婷婷  英语  78

2.创建hive表并导入数据

create table score(
name string,
subject string, 
score int) 
row format delimited fields terminated by "\t";
load data local inpath '/opt/module/datas/score.txt' into table score;

3.按需求查询数据

select name,subject,score,
rank() over(partition by subject order by score desc) rp,
dense_rank() over(partition by subject order by score desc) drp,
row_number() over(partition by subject order by score desc) rmp
from score;

结果如下:

name subject score   rp drp rmp
孙悟空  数学 95 1 1 1
宋宋 数学 86 2 2 2
婷婷 数学 85 3 3 3
大海 数学 56 4 4 4
宋宋 英语 84 1 1 1
大海 英语 84 1 1 2
婷婷 英语 78 3 2 3
孙悟空  英语 68 4 3 4
大海 语文 94 1 1 1
孙悟空  语文 87 2 2 2
婷婷 语文 65 3 3 3
宋宋 语文 64 4 4 4

转载自

https://www.jianshu.com/p/fd86a9743045

文章来源: www.jianshu.com,作者:百忍成金的虚竹,版权归原作者所有,如需转载,请联系作者。

原文链接:www.jianshu.com/p/b50512dd353f

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。