DL之PSPNet:PSPNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

举报
一个处女座的程序猿 发表于 2021/03/27 00:02:13 2021/03/27
【摘要】 DL之PSPNet:PSPNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略         目录 PSPNet算法的简介(论文介绍) 0、实验结果 PSPNet算法的架构详解 PSPNet算法的案例应用           相关文章DL之PSPNet:PSPNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略...

DL之PSPNet:PSPNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

 

 

 

 

目录

PSPNet算法的简介(论文介绍)

0、实验结果

PSPNet算法的架构详解

PSPNet算法的案例应用


 

 

 

 

 

相关文章
DL之PSPNet:PSPNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略
DL之PSPNet:PSPNet算法的架构详解

PSPNet算法的简介(论文介绍)

更新……

Abstract  
      Scene parsing is challenging for unrestricted open vocabulary  and diverse scenes. In this paper, we exploit the  capability of global context information by different-regionbased  context aggregation through our pyramid pooling  module together with the proposed pyramid scene parsing  network (PSPNet). Our global prior representation is effective  to produce good quality results on the scene parsing  task, while PSPNet provides a superior framework for pixellevel  prediction. The proposed approach achieves state-ofthe-art  performance on various datasets. It came first in ImageNet  scene parsing challenge 2016, PASCAL VOC 2012  benchmark and Cityscapes benchmark. A single PSPNet  yields the new record of mIoU accuracy 85.4% on PASCAL  VOC 2012 and accuracy 80.2% on Cityscapes.
      场景解析对于不受限制的开放词汇表和不同的场景具有挑战性。本文结合金字塔场景分析网络(PSPNet),通过金字塔池模块实现了基于不同区域的上下文聚合,实现了全局上下文信息的聚合。我们的全局先验表示方法能够有效地在场景解析任务中生成高质量的结果,而PSPNet为pixellevel预测提供了一个优越的框架。该方法在各种数据集上实现了最先进的性能。在ImageNet场景分析的挑战2016、PASCAL VOC 2012基准测试和Cityscapes基准测试中获得第一名。单个PSPNet在PASCAL VOC 2012上的mIoU准确率为85.4%,在城市景观上的准确率为80.2%。
Concluding Remarks  
      We have proposed an effective pyramid scene parsing  network for complex scene understanding. The global pyramid pooling feature provides additional contextual information.  We have also provided a deeply supervised optimization  strategy for ResNet-based FCN network. We hope the  implementation details publicly available can help the community  adopt these useful strategies for scene parsing and  semantic segmentation and advance related techniques.
      针对复杂场景的理解,提出了一种有效的金字塔场景解析网络。全局金字塔池功能提供了额外的上下文信息。为基于resnet的FCN网络提供了一种深度监督优化策略。我们希望公开的实现细节可以帮助社区采用这些有用的场景解析和语义分割策略,并推进相关技术。

论文
Hengshuang Zhao, JianpingShi, XiaojuanQi, XiaogangWang, JiayaJia.
Pyramid Scene Parsing Network. CVPR 2017.
https://arxiv.org/abs/1612.01105

 

0、实验结果

1、Experiments

作者在三个不同的数据集上做实验,Three different datasets, including  三个不同的数据集,包括

  • ImageNet scene parsing challenge 2016
    ImageNet场景解析挑战2016
  • PASCAL VOC 2012 semantic segmentation
    PASCAL VOC 2012语义分割
  • urban scene understanding dataset Cityscapes
    城市场景理解数据集城市景观

 

2、在ADE2OK验证集中,不同预训练ResNet的PSPNet性能

Performance of PSPNet with different pre-trained ResNet on ADE2OK validation set 
随着深度增加,性能逐渐增加;当然,深度越深,其复杂度越高!
Visual improvements on ADE20K
PSPNet produces more accurate and detailed results.   
因为有全局信息,PSPNet 生成了更精确和详细的结果。

 

3、PASCAL VOC 2012数据的可视化改进

PSPNet定量分析——PASCAL VOC 2012测试集每段成绩,MS-COCO数据集上预训练方法标注“+”

Table 6. Per-class results on PASCAL VOC 2012 testing set. Methods pre-trained on MS-COCO are marked with ‘+’ . 

 

Visual improvements on PASCAL VOC 2012 data
PSP-Net produces more accurate and detailed results.  图中,可知PSP-Net产生了更精确和详细的结果。

PASCAL VOC 2012年数据的可视化比较

Figure 9. Visual comparison on PASCAL VOC 2012 data. 

图可知,DeepLab和PSPNet的分割效果都是不错的!

 

 

 

 

 

4、在Cityscapes数据集上的PSPNet结果示例

在城市景观测试集上的结果,使用细数据和粗数据训练的方法被标记为“+”

Table 7. Results on Cityscapes testing set. Methods trained using both fine and coarse data are marked with '+'. 

 

Examples of PSPNet results on Cityscapes dataset

 

 

 

PSPNet算法的架构详解

更新……

DL之PSPNet:PSPNet算法的架构详解

 

 

 

PSPNet算法的案例应用

更新……

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

文章来源: yunyaniu.blog.csdn.net,作者:一个处女座的程序猿,版权归原作者所有,如需转载,请联系作者。

原文链接:yunyaniu.blog.csdn.net/article/details/95535897

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。