ML之回归预测:利用九大类机器学习算法对无人驾驶汽车系统参数(2018年的data,18+2)进行回归预测值VS真实值
ML之回归预测:利用九大类机器学习算法对无人驾驶汽车系统参数(2018年的data,18+2)进行回归预测值VS真实值
相关文章
ML之回归预测:利用九大类机器学习算法对无人驾驶汽车系统参数(2018年的data,18+2)进行回归预测值VS真实值
目录
输出结果
-
数据的初步查验:输出回归目标值的差异
-
The max target value is PeakNonedb 89
-
dtype: int64
-
The min target value is PeakNonedb 56
-
dtype: int64
-
The average target value is PeakNonedb 63.392157
-
dtype: float64
-
X_test进行归一化:
-
[[-0.9491207 -1.77209939 -0.79948391 -1.43561411 -1.57260903 -1.40726549
-
-1.45642384 -1.48633439 -1.3001131 -1.39201745 -1.43714071 -2.7383659
-
-0.94919765 -0.73005097 0. -0.49383335 -0.65675347]
-
[-0.75177877 -1.77498304 -0.79948391 -1.23709687 -1.34056255 -1.34617547
-
-1.2643713 -1.28972931 -1.09785003 -1.17393121 -1.22164307 -2.31661538
-
-1.14197474 -1.03125079 0. -0.49383335 -0.64970028]
-
[-0.55443684 -1.77209939 -0.79948391 -0.86678588 -0.91216904 -0.97963535
-
-0.8962706 -0.92109479 -0.64443991 -0.73819491 -0.80934977 -1.47311433
-
-1.14197474 -1.3324506 0. -0.50137443 -0.64970028]
-
[-0.35709492 -1.77498304 -0.79948391 -0.50029252 -0.49270039 -0.50757609
-
-0.53350469 -0.55491783 -0.21524754 -0.30289478 -0.41108294 -0.41873802
-
-1.33475182 -1.3324506 0. -0.52399769 -0.65675347]
-
[-0.15975299 -1.48373433 -0.79948391 -1.18746756 -1.28255093 -1.30452318
-
-1.21102337 -1.23074779 -1.08349877 -1.17436739 -1.22546848 -2.31661538
-
-0.17808931 -0.27825126 0. -0.49383335 -0.62854068]
-
[ 0.03758894 -1.48373433 -0.79948391 -0.82479185 -0.86308228 -1.01295718
-
-0.85625965 -0.86702839 -0.66731223 -0.73863108 -0.80934977 -1.3676767
-
-0.94919765 -0.88065088 0. -0.49383335 -0.64264708]
-
[ 0.23493087 -1.48373433 -0.79948391 -0.48502196 -0.47485066 -0.46592381
-
-0.51483291 -0.51313925 -0.22690794 -0.30333095 -0.40938276 -0.20786276
-
-1.14197474 -1.18185069 0. -0.49383335 -0.62854068]
-
[-0.9491207 -0.04479271 0.07932705 -0.58809822 -0.5774866 -0.51312973
-
-0.58952001 -0.63847499 -0.2179384 -0.30289478 -0.40640745 -0.20786276
-
-1.52752891 -1.78425032 0. -0.48629226 -0.61443429]
-
[-0.75177877 -0.04190905 0.07932705 -0.59191586 -0.58641147 -0.52979065
-
-0.59218741 -0.62127205 -0.21659297 -0.30333095 -0.40895772 -0.41873802
-
-1.52752891 -1.63365041 0. -0.49383335 -0.62854068]
-
[-0.55443684 -0.04190905 0.07932705 -0.59191586 -0.58641147 -0.5381211
-
-0.5975222 -0.60652667 -0.22466556 -0.30333095 -0.40768258 -0.41873802
-
-1.52752891 -1.63365041 0. -0.49383335 -0.62148748]
-
[-0.35709492 -0.04479271 0.07932705 -0.54610419 -0.51501255 -0.48536154
-
-0.55484386 -0.55000271 -0.22825337 -0.30333095 -0.40853267 -0.31330039
-
-1.33475182 -1.3324506 0. -0.49383335 -0.62148748]
-
[-0.15975299 -0.04767636 0.07932705 -0.50411016 -0.47038823 -0.51312973
-
-0.51216551 -0.5573754 -0.20941734 -0.30333095 -0.41405825 -0.20786276
-
-1.14197474 -1.3324506 0. -0.48629226 -0.62148748]]
各个模型结果
LiR | LiR:The value of default measurement of LiR is 0.5231458055883889 LiR:R-squared value of DecisionTreeRegressor: 0.5231458055883889 LiR:测试141~153行数据, [[56.63220089] [58.94184439] [59.10056518] [56.54114422] [60.11923295] [60.81269213] [57.55507446] [61.38670841] [61.58889402] [61.77824699] [61.18940628] [62.06650565]] |
kNN | kNNR_uni:The value of default measurement of kNNR_uni is 0.5866024699259602
kNNR_dis:The value of default measurement of kNNR_dis is 0.6601811947182363 |
SVM | linear_SVR:The value of default measurement of linear_SVR is 0.1743724332386528
|
DT | DTR:The value of default measurement of DTR is 0.4428265960696466 DTR:R-squared value of DecisionTreeRegressor: 0.4428265960696466 DTR:测试141~153行数据, [60. 58. 62. 64. 58. 62. 56. 65. 64. 57. 56. 64.] |
RF | RFR:The value of default measurement of RFR is 0.7295335069166653 RFR:R-squared value of DecisionTreeRegressor: 0.7295335069166653 RFR:测试141~153行数据 [59.2 60.53333333 60.26666667 62.46666667 60.2 59.86666667 59.8 64.46666667 64.33333333 61.6 60.33333333 63.2 ] |
ETR | ETR:The value of default measurement of ETR is 0.762766666181797 ETR:R-squared value of DecisionTreeRegressor: 0.762766666181797 ETR:测试141~153行数据 [59.1 59.3 59.2 60.3 61.1 59.1 59.7 63.5 63. 62.8 61.8 62.2] |
GB/GD | SGDR:The value of default measurement of SGDR is -4.233646688626224
|
LGB | [LightGBM] [Warning] feature_fraction is set=0.6, colsample_bytree=1.0 will be ignored. Current value: feature_fraction=0.6
|
核心代码
后期更新……
文章来源: yunyaniu.blog.csdn.net,作者:一个处女座的程序猿,版权归原作者所有,如需转载,请联系作者。
原文链接:yunyaniu.blog.csdn.net/article/details/88637383
- 点赞
- 收藏
- 关注作者
评论(0)