sklearn:sklearn.preprocessing的MinMaxScaler简介、使用方法之详细攻略

举报
一个处女座的程序猿 发表于 2021/03/26 01:32:13 2021/03/26
【摘要】 sklearn:sklearn.preprocessing的MinMaxScaler简介、使用方法之详细攻略   目录 MinMaxScaler简介 MinMaxScaler函数解释 MinMaxScaler底层代码 MinMaxScaler的使用方法 1、基础案例     MinMaxScaler简介 MinMaxSca...

sklearn:sklearn.preprocessing的MinMaxScaler简介、使用方法之详细攻略

 

目录

MinMaxScaler简介

MinMaxScaler函数解释

MinMaxScaler底层代码

MinMaxScaler的使用方法

1、基础案例


 

 

MinMaxScaler简介

MinMaxScaler函数解释

    """Transforms features by scaling each feature to a given range.
    
    This estimator scales and translates each feature individually such that it is in the given range on the training set, i.e. between zero and one.
    
    The transformation is given by::
    
    X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))
    X_scaled = X_std * (max - min) + min
    
    where min, max = feature_range.
    
    This transformation is often used as an alternative to zero mean, unit variance scaling.
    
    Read more in the :ref:`User Guide <preprocessing_scaler>`.
“”通过将每个特性缩放到给定范围来转换特性。

这个估计量对每个特征进行了缩放和单独转换,使其位于训练集的给定范围内,即在0和1之间

变换由::

    X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))
    X_scaled = X_std * (max - min) + min

其中,min, max = feature_range。

这种转换经常被用来替代零均值,单位方差缩放。

请参阅:ref: ' User Guide  '。</preprocessing_scaler>
    Parameters
    ----------
    feature_range : tuple (min, max), default=(0, 1)
    Desired range of transformed data.
    
    copy : boolean, optional, default True
    Set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array).
参数

feature_range: tuple (min, max),默认值=(0,1)
所需的转换数据范围。

复制:布尔值,可选,默认为真
设置为False执行插入行规范化并避免复制(如果输入已经是numpy数组)。
    Attributes
    ----------
    min_ : ndarray, shape (n_features,)
    Per feature adjustment for minimum.
    
    scale_ : ndarray, shape (n_features,)
    Per feature relative scaling of the data.
    
    .. versionadded:: 0.17
    *scale_* attribute.
    
    data_min_ : ndarray, shape (n_features,)
    Per feature minimum seen in the data
    
    .. versionadded:: 0.17
    *data_min_*
    
    data_max_ : ndarray, shape (n_features,)
    Per feature maximum seen in the data
    
    .. versionadded:: 0.17
    *data_max_*
    
    data_range_ : ndarray, shape (n_features,)
    Per feature range ``(data_max_ - data_min_)`` seen in the data
    
    .. versionadded:: 0.17
    *data_range_*

属性
 ----------
min_: ndarray, shape (n_features,)
每个功能调整为最小。

scale_: ndarray, shape (n_features,)
每个特征数据的相对缩放。

. .versionadded:: 0.17
* scale_ *属性。

data_min_: ndarray, shape (n_features,)
每个特征在数据中出现的最小值

. .versionadded:: 0.17
* data_min_ *

data_max_: ndarray, shape (n_features,)
每个特征在数据中出现的最大值


. .versionadded:: 0.17
* data_max_ *
data_range_: ndarray, shape (n_features,)
在数据中看到的每个特性范围' ' (data_max_ - data_min_) ' '


. .versionadded:: 0.17
* data_range_ *

 

MinMaxScaler底层代码


      class MinMaxScaler Found at: sklearn.preprocessing.data
      class MinMaxScaler(BaseEstimator, TransformerMixin):
      def __init__(self, feature_range=(0, 1), copy=True):
       self.feature_range = feature_range
       self.copy = copy
      def _reset(self):
      """Reset internal data-dependent state of the scaler, if
       necessary.
       __init__ parameters are not touched.
       """
      # Checking one attribute is enough, becase they are all set 
       together
      # in partial_fit
      if hasattr(self, 'scale_'):
      del self.scale_
      del self.min_
      del self.n_samples_seen_
      del self.data_min_
      del self.data_max_
      del self.data_range_
      def fit(self, X, y=None):
      """Compute the minimum and maximum to be used for later
       scaling.
       Parameters
       ----------
       X : array-like, shape [n_samples, n_features]
       The data used to compute the per-feature minimum and
       maximum
       used for later scaling along the features axis.
       """
      # Reset internal state before fitting
       self._reset()
      return self.partial_fit(X, y)
      def partial_fit(self, X, y=None):
      """Online computation of min and max on X for later scaling.
       All of X is processed as a single batch. This is intended for
       cases
       when `fit` is not feasible due to very large number of
       `n_samples`
       or because X is read from a continuous stream.
       Parameters
       ----------
       X : array-like, shape [n_samples, n_features]
       The data used to compute the mean and standard deviation
       used for later scaling along the features axis.
       y : Passthrough for ``Pipeline`` compatibility.
       """
       feature_range = self.feature_range
      if feature_range[0] >= feature_range[1]:
      raise ValueError(
      "Minimum of desired feature range must be smaller"
      " than maximum. Got %s." %
       str(feature_range))
      if sparse.issparse(X):
      raise TypeError("MinMaxScaler does no support sparse
       input. "
      "You may consider to use MaxAbsScaler instead.")
       X = check_array(X, copy=self.copy, warn_on_dtype=True,
       estimator=self, dtype=FLOAT_DTYPES)
       data_min = np.min(X, axis=0)
       data_max = np.max(X, axis=0)
      # First pass
      if not hasattr(self, 'n_samples_seen_'):
       self.n_samples_seen_ = X.shape[0]
      else:
       data_min = np.minimum(self.data_min_, data_min)
       data_max = np.maximum(self.data_max_, data_max)
       self.n_samples_seen_ += X.shape[0] # Next steps
       data_range = data_max - data_min
       self.scale_ = (feature_range[1] - feature_range[0]) /
       _handle_zeros_in_scale(data_range)
       self.min_ = feature_range[0] - data_min * self.scale_
       self.data_min_ = data_min
       self.data_max_ = data_max
       self.data_range_ = data_range
      return self
      def transform(self, X):
      """Scaling features of X according to feature_range.
       Parameters
       ----------
       X : array-like, shape [n_samples, n_features]
       Input data that will be transformed.
       """
       check_is_fitted(self, 'scale_')
       X = check_array(X, copy=self.copy, dtype=FLOAT_DTYPES)
       X *= self.scale_
       X += self.min_
      return X
      def inverse_transform(self, X):
      """Undo the scaling of X according to feature_range.
       Parameters
       ----------
       X : array-like, shape [n_samples, n_features]
       Input data that will be transformed. It cannot be sparse.
       """
       check_is_fitted(self, 'scale_')
       X = check_array(X, copy=self.copy, dtype=FLOAT_DTYPES)
       X -= self.min_
       X /= self.scale_
      return X
  
 

 

MinMaxScaler的使用方法

1、基础案例


       >>> from sklearn.preprocessing import MinMaxScaler
       >>>
       >>> data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]
       >>> scaler = MinMaxScaler()
       >>> print(scaler.fit(data))
       MinMaxScaler(copy=True, feature_range=(0, 1))
       >>> print(scaler.data_max_)
       [  1.  18.]
       >>> print(scaler.transform(data))
       [[ 0. 0.  ]
       [ 0.25  0.25]
       [ 0.5   0.5 ]
       [ 1. 1.  ]]
       >>> print(scaler.transform([[2, 2]]))
       [[ 1.5  0. ]]
  
 

 

 

 

 

 

 

 

 

 

 

 

文章来源: yunyaniu.blog.csdn.net,作者:一个处女座的程序猿,版权归原作者所有,如需转载,请联系作者。

原文链接:yunyaniu.blog.csdn.net/article/details/104719182

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。