LiteOS内核源码分析系列一 盘点那些重要的数据结构 (1)
LiteOS内核源码分析系列一 盘点那些重要的数据结构 -- DL
在学习Huawei LiteOS
源代码的时候,常常会遇到一些数据结构的使用。如果没有掌握这它们的用法,阅读LiteOS
源代码的时候会很费解、很吃力。本文会给读者介绍下LiteOS
源码中常用的几个数据结构,包括: 双向循环链表LOS_DL_LIST
,优先级队列Priority Queue
,排序链表SortLinkList
等。在讲解时,会结合相关的绘图,培养数据结构的平面想象能力,帮助更好的学习和理解这些数据结构用法。
本文中所涉及的LiteOS
源码,均可以在LiteOS
开源站点https://gitee.com/LiteOS/LiteOS 获取。
我们首先来看看使用最多的双向循环链表Doubly Linked List
。
1、LOS_DL_LIST 双向循环链表
双向链表LOS_DL_LIST
核心的代码都在kernel\include\los_list.h
头文件中,包含LOS_DL_LIST
结构体定义、一些inline
内联函数LOS_ListXXX
,还有一些双向链表相关的宏定义LOS_DL_LIST_XXXX
。
双向链表源代码、示例程序代码、开发文档如下:
-
kernel\include\los_list.h 双向链表头文件
网页获取源码 https://gitee.com/LiteOS/LiteOS/blob/master/kernel/include/los_list.h。
-
demos\kernel\api\los_api_list.c 双向链表Demo程序
网页获取源码 https://gitee.com/LiteOS/LiteOS/blob/master/demos/kernel/api/los_api_list.c。
-
开发指南双向链表文档
1.1 LOS_DL_LIST 双向链表结构体
双向链表结构体LOS_DL_LIST
定义如下。看得出来,双向链表的结构非常简单、通用、抽象,只包含前驱、后继两个节点,负责承上启下的双向链表作用。双向链表不包任何业务数据信息,业务数据信息维护在业务的结构体中。双向链表作为业务结构体的成员使用,使用示例稍后会有讲述。
typedef struct LOS_DL_LIST {
struct LOS_DL_LIST *pstPrev; /** 当前节点的指向前驱节点的指针 */
struct LOS_DL_LIST *pstNext; /** 当前节点的指向后继节点的指针 */
} LOS_DL_LIST;
从双向链表中的任意一个结点开始,都可以很方便地访问它的前驱结点和后继结点,这种数据结构形式使得双向链表在查找、插入、删除等操作,对于非常方便。由于双向链表的环状结构,任何一个节点的地位都是平等的。从业务上,可以创建一个节点作为Head
头节点,业务结构体的链表节点从HEAD
节点开始挂载。从head
节点的依次遍历下一个节点,最后一个不等于Head
节点的节点称之为Tail
尾节点。这个Tail
节点也是Head
节点的前驱。从Head
向前查找,可以更快的找到Tail
节点。
我们看看LiteOS
内核代码中如何使用双向链表结构体的。下面是互斥锁结构体LosMuxCB
定义,其中包含双向链表LOS_DL_LIST muxList;
成员变量:
typedef struct {
LOS_DL_LIST muxList; /** 互斥锁的双向链表*/
LosTaskCB *owner; /** 当前持有锁的任务TCB */
UINT16 muxCount; /** 持有互斥锁的次数 */
UINT8 muxStat; /** 互斥锁状态OS_MUX_UNUSED, OS_MUX_USED */
UINT32 muxId; /** 互斥锁handler ID*/
} LosMuxCB;
双向循环链表可以把各个互斥锁链接起来,链表和其他业务成员关系如下图所示:
LiteOS的双向链表为用户提供下面初始化双向列表,增加、删除链表节点,判断节点是否为空,获取链表节点,获取链表所在的结构体,遍历双向链表,遍历包含双向链表的结构体等功能。我们一一来详细的学习、分析下代码。
1.2 LOS_DL_LIST 双向链表初始化
1.2.1 LOS_ListInit(LOS_DL_LIST *list)
LOS_DL_LIST
的两个成员*pstPrev
和*pstNext
, 是LOS_DL_LIST
结构体类型的指针。需要为双向链表节点申请长度为sizeof(LOS_DL_LIST)
的一段内存空间。为链表节点申请完毕内存后,可以调用初始化LOS_ListInit(LOS_DL_LIST *list)
方法,把这个节点链接为环状的双向链表。初始化链表的时候,只有一个链表节点,这个节点的前序和后继节点都是自身。
链表节点初始化为链表,如图所示:
源码如下:
LITE_OS_SEC_ALW_INLINE STATIC INLINE VOID LOS_ListInit(LOS_DL_LIST *list)
{
list->pstNext = list;
list->pstPrev = list;
}
另外,还提供了一个宏LOS_DL_LIST_HEAD
,直接定义一个双向链表节点并以该节点初始化为双向链表。
#define LOS_DL_LIST_HEAD(list) LOS_DL_LIST list = { &(list), &(list) }
1.2.2 LOS_ListEmpty(LOS_DL_LIST *list)
该接口用于判断链表是否为空。如果双向链表的前驱/后继节点均为自身,只有一个链表HEAD
头节点,没有挂载业务结构体的链表节点,称该链表为空链表。
源码如下:
LITE_OS_SEC_ALW_INLINE STATIC INLINE BOOL LOS_ListEmpty(LOS_DL_LIST *list)
{
return (BOOL)(list->pstNext == list);
}
1.3 LOS_DL_LIST 双向链表节点操作
LiteOS
双向链表提供三种链表节点插入方法,指定链表节点后面插入LOS_ListAdd
、尾部插入LOS_ListTailInsert
、头部插入LOS_ListHeadInsert
。在头部插入的节点,从头部开始遍历时第一个遍历到,从尾部插入的节点,最后一个遍历到。
1.3.1 LOS_ListAdd(LOS_DL_LIST *list, LOS_DL_LIST *node)
这个API
接口往链表节点*list
所在的双向链表中插入一个链表节点*node
,插入位置在链表节点*list
的后面。如图所示,完成插入后,*node
的后继节点是list->pstNext
,*node
的前序节点是*list
。list->pstNext
的前序节点是*node
,*list
的后续是*node
节点。
图示:
源码如下:
LITE_OS_SEC_ALW_INLINE STATIC INLINE VOID LOS_ListAdd(LOS_DL_LIST *list, LOS_DL_LIST *node)
{
node->pstNext = list->pstNext;
node->pstPrev = list;
list->pstNext->pstPrev = node;
list->pstNext = node;
}
1.3.2 LOS_ListTailInsert(LOS_DL_LIST *list, LOS_DL_LIST *node)
这个API
接口往链表节点*list
所在的双向链表中插入一个链表节点*node
,插入位置在链表节点*list
的前面,在list->pstPrev
节点的后面。
源码如下:
LITE_OS_SEC_ALW_INLINE STATIC INLINE VOID LOS_ListTailInsert(LOS_DL_LIST *list, LOS_DL_LIST *node)
{
LOS_ListAdd(list->pstPrev, node);
}
1.3.3 LOS_ListHeadInsert(LOS_DL_LIST *list, LOS_DL_LIST *node)
这个API
接口和LOS_ListAdd()
接口实现同样的功能,往链表节点*list
所在的双向链表中插入一个链表节点*node
,插入位置在链表节点*list
的后面。
源码如下:
LITE_OS_SEC_ALW_INLINE STATIC INLINE VOID LOS_ListHeadInsert(LOS_DL_LIST *list, LOS_DL_LIST *node)
{
LOS_ListAdd(list, node);
}
LiteOS双向链表提供两种链表节点的删除方法,指定节点删除LOS_ListDelete
、删除并初始化为一个新链表LOS_ListDelInit
。
1.3.4 LOS_ListDelete(LOS_DL_LIST *node)
这个API
接口将链表节点*node
从所在的双向链表中删除。节点删除后,可能需要调用Free()
函数释放节点所占用的内存。如图所示,*node
节点后继节点的前序改为*node
的前序,*node
节点前序节点的后续改为*node
的后续,并把*node
节点的前序、后续节点设置为null
。
图示:
源码如下:
LITE_OS_SEC_ALW_INLINE STATIC INLINE VOID LOS_ListDelete(LOS_DL_LIST *node)
{
node->pstNext->pstPrev = node->pstPrev;
node->pstPrev->pstNext = node->pstNext;
node->pstNext = NULL;
node->pstPrev = NULL;
}
1.3.5 LOS_ListDelInit(LOS_DL_LIST *list)
这个API
接口将链表节点*list
从所在的双向链表中删除, 并把删除后的节点重新初始化为一个新的双向链表。
*list
节点后继节点的前序改为*list
的前序,*list
节点前序节点的后续改为*list
的后续。和LOS_ListDelete()
方法不同的是,并不并把*list
节点的前序、后续节点设置为null
,而是把这个删除的节点重新初始化为一个新的以*list
为头结点的双向链表。
源码如下:
LITE_OS_SEC_ALW_INLINE STATIC INLINE VOID LOS_ListDelInit(LOS_DL_LIST *list)
{
list->pstNext->pstPrev = list->pstPrev;
list->pstPrev->pstNext = list->pstNext;
LOS_ListInit(list);
}
LiteOS双向链表还提供获取链表节点、获取包含链表的结构体地址的操作。
1.3.6 LOS_DL_LIST_LAST(object)
这个宏定义获取链表的前驱节点。
源码如下:
#define LOS_DL_LIST_LAST(object) ((object)->pstPrev)
1.3.7 LOS_DL_LIST_FIRST(object)
这个宏定义获取链表的后继节点。
源码如下:
#define LOS_DL_LIST_FIRST(object) ((object)->pstNext)
1.3.8 LOS_OFF_SET_OF(type, member)
这个宏定义根据结构体类型名称type
和其中的成员变量名称member
,获取member
成员变量相对于结构体type
的内存地址偏移量。在应用场景上,业务结构体包含双向链表作为成员,当知道双向链表成员变量的内存地址时,和这个偏移量,可以进一步获取业务结构体的内存地址。
源码如下:
#define LOS_OFF_SET_OF(type, member) ((UINTPTR)&((type *)0)->member)
1.3.9 LOS_DL_LIST_ENTRY(item, type, member)
根据业务结构体类型名称type
、其中的双向链表成员变量名称member
,和双向链表的内存指针变量item
,使用该宏定义LOS_DL_LIST_ENTRY
可以获取业务结构体的内存地址。
我们以实际例子演示下这个宏LOS_DL_LIST_ENTRY
是如何使用的。互斥锁的control block
结构体LosMuxCB
在上文已经展示过其代码,有个双向链表的成员变量LOS_DL_LIST muxList
。在创建互斥锁的方法LOS_MuxCreate()
中,⑴ 处代码从空闲互斥锁链表中获取一个空闲的双向链表节点指针地址LOS_DL_LIST *unusedMux
,把这个作为第一个参数,结构体名称LosMuxCB
及其成员变量muxList
,分别作为第二、第三个参数,使用宏LOS_DL_LIST_ENTRY
可以计算出结构体的指针变量地址LosMuxCB *muxCreated
,见⑵处代码。
LITE_OS_SEC_TEXT UINT32 LOS_MuxCreate(UINT32 *muxHandle)
{
......
LosMuxCB *muxCreated = NULL;
LOS_DL_LIST *unusedMux = NULL;
......
⑴ unusedMux = LOS_DL_LIST_FIRST(&g_unusedMuxList);
LOS_ListDelete(unusedMux);
⑵ muxCreated = LOS_DL_LIST_ENTRY(unusedMux, LosMuxCB, muxList);
......
}
从这个例子上,就比较容易理解,这个宏定义可以用于什么样的场景,读者们可以阅读查看更多使用这个宏的例子,加强理解。
源码如下:
源码实现上,基于双向链表节点的内存地址,和双向链表成员变量在结构体中的地址偏移量,可以计算出结构体的内存地址。
#define LOS_DL_LIST_ENTRY(item, type, member) \
((type *)(VOID *)((CHAR *)(item) - LOS_OFF_SET_OF(type, member)))
1.4 LOS_DL_LIST 双向循环链表遍历
LiteOS
双向循环链表提供两种遍历双向链表的方法,LOS_DL_LIST_FOR_EACH
和LOS_DL_LIST_FOR_EACH_SAFE
。
1.4.1 LOS_DL_LIST_FOR_EACH(item, list)
该宏定义LOS_DL_LIST_FOR_EACH
遍历双向链表,接口的第一个入参表示的是双向链表节点的指针变量,在遍历过程中依次指向下一个链表节点。第二个入参是要遍历的双向链表的起始节点。这个宏是个循环条件部分,用户的业务代码写在宏后面的代码块{}
内。
我们以实际例子来演示这个宏LOS_DL_LIST_FOR_EACH
是如何使用的。在kernel\base\sched\sched_sq\los_priqueue.c
文件中,UINT32 OsPriQueueSize(UINT32 priority)
函数的片段如下:
&g_priQueueList[priority]
是我们要遍历的双向链表,curNode
指向遍历过程中的链表节点,见⑴处代码代码。完整代码请访问我们的开源站点。
UINT32 OsPriQueueSize(UINT32 priority)
{
UINT32 itemCnt = 0;
LOS_DL_LIST *curNode = NULL;
......
⑴ LOS_DL_LIST_FOR_EACH(curNode, &g_priQueueList[priority]) {
......
task = OS_TCB_FROM_PENDLIST(curNode);
......
}
return itemCnt;
}
源码如下:
#define LOS_DL_LIST_FOR_EACH(item, list) \
for (item = (list)->pstNext; \
(item) != (list); \
item = (item)->pstNext)
1.4.2 LOS_DL_LIST_FOR_EACH_SAFE(item, next, list)
该宏定义LOS_DL_LIST_FOR_EACH_SAFE
和LOS_DL_LIST_FOR_EACH
唯一的区别就是多个入参next
, 这个参数表示遍历到的双向链表节点的下一个节点。该宏用于安全删除,如果删除遍历到的item
, 不影响继续遍历。
源码如下:
#define LOS_DL_LIST_FOR_EACH_SAFE(item, next, list) \
for (item = (list)->pstNext, next = (item)->pstNext; \
(item) != (list); \
item = next, next = (item)->pstNext)
1.5 LOS_DL_LIST 遍历包含双向链表的结构体
LiteOS
双向链表提供三个宏定义来遍历包含双向链表成员的结构体,LOS_DL_LIST_FOR_EACH_ENTRY
、LOS_DL_LIST_FOR_EACH_ENTRY_SAFE
和LOS_DL_LIST_FOR_EACH_ENTRY_HOOK
。
1.5.1 LOS_DL_LIST_FOR_EACH_ENTRY(item, list, type, member)
该宏定义LOS_DL_LIST_FOR_EACH_ENTRY
遍历双向链表,接口的第一个入参表示的是包含双向链表成员的结构体的指针变量,第二个入参是要遍历的双向链表的起始节点,第三个入参是要获取的结构体名称,第四个入参是在该结构体中的双向链表的成员变量名称。
我们以实际例子来演示这个宏LOS_DL_LIST_FOR_EACH_ENTRY
是如何使用的。在kernel\base\sched\sched_sq\los_priqueue.c
文件中,LosTaskCB *OsGetTopTask(VOID)
函数的片段如下。结构体LosTaskCB
包含双向链表成员变量pendList
,&g_priQueueList[priority]
是对应任务优先级priority
的pendList
的双向链表。会依次遍历这个双向链表&g_priQueueList[priority]
,根据遍历到的链表节点,依次获取任务结构体LosTaskCB
的指针变量newTask
,如⑴处代码所示。
LITE_OS_SEC_TEXT_MINOR LosTaskCB *OsGetTopTask(VOID)
{
UINT32 priority;
UINT32 bitmap;
LosTaskCB *newTask = NULL;
......
⑴ LOS_DL_LIST_FOR_EACH_ENTRY(newTask, &g_priQueueList[priority], LosTaskCB, pendList) {
......
OsPriQueueDequeue(&newTask->pendList);
......
}
......
}
源码如下:
源码实现上,for
循环的初始化语句item = LOS_DL_LIST_ENTRY((list)->pstNext, type, member)
表示包含双向链表成员的结构体的指针变量item
,条件测试语句&(item)->member != (list)
循环条件表示当双向链表遍历一圈到自身节点的时候,停止循环。循环更新语句item = LOS_DL_LIST_ENTRY((item)->member.pstNext, type, member))
中,使用(item)->member.pstNext
遍历到下一个链表节点,然后根据这个节点获取对应的下一个结构体的指针变量item
,直至遍历完毕。
#define LOS_DL_LIST_FOR_EACH_ENTRY(item, list, type, member) \
for (item = LOS_DL_LIST_ENTRY((list)->pstNext, type, member); \
&(item)->member != (list); \
item = LOS_DL_LIST_ENTRY((item)->member.pstNext, type, member))
1.5.2 LOS_DL_LIST_FOR_EACH_ENTRY_SAFE(item, next, list, type, member)
该宏定义和LOS_DL_LIST_FOR_EACH_ENTRY
唯一的区别就是多个个入参next
, 这个参数表示遍历到的结构体的下一个结构体地址的指针变量。该宏用于安全删除,如果删除遍历到的item
,不影响继续遍历。
源码如下:
#define LOS_DL_LIST_FOR_EACH_ENTRY_SAFE(item, next, list, type, member) \
for (item = LOS_DL_LIST_ENTRY((list)->pstNext, type, member), \
next = LOS_DL_LIST_ENTRY((item)->member->pstNext, type, member); \
&(item)->member != (list); \
item = next, next = LOS_DL_LIST_ENTRY((item)->member.pstNext, type, member))
1.5.3 LOS_DL_LIST_FOR_EACH_ENTRY_HOOK(item, list, type, member, hook)
该宏定义和LOS_DL_LIST_FOR_EACH_ENTRY
的区别就是多了个入参hook
个钩子函数。在每次遍历循环中,调用该钩子函数做些用户定制的工作。
源码如下:
#define LOS_DL_LIST_FOR_EACH_ENTRY_HOOK(item, list, type, member, hook) \
for (item = LOS_DL_LIST_ENTRY((list)->pstNext, type, member), hook; \
&(item)->member != (list); \
item = LOS_DL_LIST_ENTRY((item)->member.pstNext, type, member), hook)
- 点赞
- 收藏
- 关注作者
评论(0)