数据结构与算法——并查集(不相交集合)

举报
bigsai 发表于 2021/02/03 22:23:30 2021/02/03
【摘要】 文章目录 认识并查集并查集解析基本思想如何查看a,b是否在一个集合?a,b合并,究竟是a的祖先合并在b的祖先上,还是b的祖先合并在a上?其他路径压缩? 代码实现结语 认识并查集 对于并查集(不相交集合),很多人会感到很陌生,没听过或者不是特别了解。实际上并查集是一种挺高效的数据结构。实现简单,只是所有元素统一遵从一个规律所以让办事情的效率高效起...

认识并查集

对于并查集(不相交集合),很多人会感到很陌生没听过或者不是特别了解。实际上并查集是一种挺高效的数据结构。实现简单,只是所有元素统一遵从一个规律所以让办事情的效率高效起来。

对于定意义,百科上这么定义的:

并查集,在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合中。其特点是看似并不复杂,但数据量极大,若用正常的数据结构来描述的话,往往在空间上过大,计算机无法承受;即使在空间上勉强通过,运行的时间复杂度也极高,根本就不可能在比赛规定的运行时间(1~3秒)内计算出试题需要的结果,只能用并查集来描述。

并查集是一种树型的数据结构,用于处理一些不相交集合(Disjoint Sets)的合并及查询问题。常常在使用中以森林来表示。

并查集解析

基本思想

  • 初始化,一个森林每个都为独立。通常用数组表示,每个值初始为-1。各自为根
    在这里插入图片描述
  • join(a,b) 操作。a,b两个集合合并。注意这里的a,并不是a,b合并,而是a,b的集合合并。这就派生了一些情况:
  • a,b如果是独立的(没有和其他合并),那么直接a指向b(或者b指向a),即data[a]=b;同时为了表示这个集合有多少个,原本-1的b再次-1.即data[b]=-2.表示以b为父亲的节点有|-2|个。
    在这里插入图片描述
    在这里插入图片描述
  • a,b如果有集合(可能有父亲,可能自己是根),那么我们当然不能直接操作a,b(因为a,b可能已经指向别人了.)那么我们只能操作a,b的祖先。因为a,b的祖先是没有指向的(即数据为负值表示大小)。那么他们首先一个负值要加到另外一个上面去。另外这个数值要变成指向的那个表示联系。
    在这里插入图片描述

对于上述你可能会有疑问:

如何查看a,b是否在一个集合?

  • 查看是否在一个集合,只需要查看节点根祖先的结果是否相同即可。因为只有根的数值是负的,而其他都是正数表示指向的元素。所以只需要一直寻找直到不为正数进行比较即可

a,b合并,究竟是a的祖先合并在b的祖先上,还是b的祖先合并在a上?

  • 这里会遇到两种情况,这个选择也是非常重要的。你要弄明白一点:树的高度+1的化那么整个元素查询的效率都会降低!

所以我们通常是:小数指向大树(或者低树指向高树),这个使得查询效率能够增加!
在这里插入图片描述
当然,在高度和数量的选择上,还需要你自己选择和考虑。

其他路径压缩?

每次查询,自下向上。当我们调用递归的时候,可以顺便压缩路径,因为我们查找一个元素其实只需要直到它的祖先,所以当他距离祖先近那么下次查询就很快。并且压缩路径的代价并不大!
在这里插入图片描述

代码实现

并查集实现起来较为简单,直接贴代码!

package 并查集不想交集合;

import java.util.Scanner;
public class DisjointSet {
	static int tree[]=new int[100000];//假设有500个值
	public DisjointSet() 	{set(this.tree);}
	public DisjointSet(int tree[]) 
	{
		this.tree=tree;
		set(this.tree);
	}
	public void set(int a[])//初始化所有都是-1 有两个好处,这样他们指向-1说明是自己,第二,-1代表当前森林有-(-1)个
	{
		int l=a.length;
		for(int i=0;i<l;i++)
		{ a[i]=-1;
		}
	}
	public int search(int a)//返回头节点的数值
	{
		if(tree[a]>0)//说明是子节点
		{ return tree[a]=search(tree[a]);//路径压缩
		}
		else return a;
	}
	public int value(int a)//返回a所在树的大小(个数)
	{
		if(tree[a]>0)
		{ return value(tree[a]);
		}
		else return -tree[a];
	}
	public void union(int a,int b)//表示 a,b所在的树合并
	{
		int a1=search(a);//a根
		int b1=search(b);//b根
		if(a1==b1) {System.out.println(a+"和"+b+"已经在一棵树上");}
		else {
		if(tree[a1]<tree[b1])//这个是负数,为了简单减少计算,不在调用value函数
		{ tree[a1]+=tree[b1];//个数相加  注意是负数相加 tree[b1]=a1; //b树成为a的子树,直接指向a;
		}
		else
		{ tree[b1]+=tree[a1];//个数相加  注意是负数相加 tree[a1]=b1; //b树成为a的子树,直接指向a;
		}
		}
	}
	public static void main(String[] args)
	{ DisjointSet d=new DisjointSet();
		d.union(1,2);
		d.union(3,4);
		d.union(5,6);
		d.union(1,6); d.union(22,24);
		d.union(3,26);
		d.union(36,24);
		System.out.println(d.search(6));	//头
		System.out.println(d.value(6)); //大小
		System.out.println(d.search(22));	//头
		System.out.println(d.value(22)); //大小
	}
}


  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73

在这里插入图片描述

结语

  • 并查集属于简单但是很高效率的数据结构。在集合中经常会遇到。如果不采用并查集而传统暴力效率太低,而不被采纳。
  • 另外,并查集还广泛用于迷宫游戏中,下面有机会可以介绍用并查集实现一个走迷宫小游戏。大家欢迎关注!
  • 最后,欢迎大家关注笔者公众号,一起学习、交流!笔者学习资源也放置公众号和大家一起分享!

文章来源: bigsai.blog.csdn.net,作者:Big sai,版权归原作者所有,如需转载,请联系作者。

原文链接:bigsai.blog.csdn.net/article/details/100061983

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。