C语言操作符详解(下)
操作符详解(下)
1.单⽬操作符
单⽬操作符有这些: !、++、–、&、、+、-、~ 、sizeof、(类型) 单⽬操作符的特点是只有⼀个操作数,在单⽬操作符中只有&和没有介绍,这2个操作符,我们放在 学习指针的时候讲解。
2.逗号表达式
exp1, exp2, exp3, …expN
逗号表达式,就是⽤逗号隔开的多个表达式。 逗号表达式,从左向右依次执⾏。整个表达式的结果是最后⼀个表达式的结果。
//代码1
int a = 1;
int b = 2;
int c = (a > b, a = b + 10, a, b = a + 1);//逗号表达式
c是多少?
//代码2
if (a = b + 1, c = a / 2, d > 0)
//代码3
a = get_val();
count_val(a);
while (a > 0)
{
//业务处理
//...
a = get_val();
count_val(a);
}
如果使⽤逗号表达式,改写:
while (a = get_val(), count_val(a), a>0)
{
//业务处理
}
3.下标访问[]、函数调⽤()
3.1 []下标引⽤操作符
操作数:⼀个数组名+⼀个索引值(下标)
int arr[10];//创建数组
arr[9] = 10;//实⽤下标引⽤操作符。
[ ]的两个操作数是arr和9。
3.2 函数调⽤操作符
接受⼀个或者多个操作数:第⼀个操作数是函数名,剩余的操作数就是传递给函数的参数。
#include <stdio.h>
void test1()
{
printf("hehe\n");
}
void test2(const char *str)
{
printf("%s\n", str);
}
int main()
{
test1(); //这⾥的()就是作为函数调⽤操作符。
test2("hello bit.");//这⾥的()就是函数调⽤操作符。
return 0;
}
4.结构成员访问操作符
4.1 结构体
C语⾔已经提供了内置类型,如:char、short、int、long、float、double等,但是只有这些内置类 型还是不够的,假设我想描述学⽣,描述⼀本书,这时单⼀的内置类型是不⾏的。 描述⼀个学⽣需要名字、年龄、学号、⾝⾼、体重等; 描述⼀本书需要书名、作者、出版社、定价等。C语⾔为了解决这个问题,增加了结构体这种⾃定义的 数据类型,让程序员可以⾃⼰创造适合的类型。
结构是⼀些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量,如: 标量、数组、指针,甚⾄是其他结构体。
4.1.1 结构的声明
struct tag
{
member-list;
}variable-list;
//描述⼀个学⽣:
struct Stu
{
char name[20];//名字
int age;//年龄
char sex[5];//性别
char id[20];//学号
}; //分号不能丢
4.1.2 结构体变量的定义和初始化
//代码1:变量的定义
struct Point
{
int x;
int y;
}p1; //声明类型的同时定义变量p1
struct Point p2; //定义结构体变量p2
//代码2:初始化。
struct Point p3 = {10, 20};
struct Stu //类型声明
{
char name[15];//名字
int age; //年龄
};
struct Stu s1 = {"zhangsan", 20};//初始化
struct Stu s2 = {.age=20, .name="lisi"};//指定顺序初始化
//代码3
struct Node
{
int data;
struct Point p;
struct Node* next;
}n1 = {10, {4,5}, NULL}; //结构体嵌套初始化
struct Node n2 = {20, {5, 6}, NULL};//结构体嵌套初始化
4.2 结构成员访问操作符
4.2.1 结构体成员的直接访问
结构体成员的直接访问是通过点操作符(.)访问的。点操作符接受两个操作数。如下所⽰:
#include <stdio.h>
struct Point
{
int x;
int y;
}p = {1,2};
int main()
{
printf("x: %d y: %d\n", p.x, p.y);
return 0;
}
使⽤⽅式:结构体变量.成员名
4.2.2 结构体成员的间接访问
有时候我们得到的不是⼀个结构体变量,⽽是得到了⼀个指向结构体的指针。如下所⽰:
#include <stdio.h>
struct Point
{
int x;
int y;
};
int main()
{
struct Point p = {3, 4};
struct Point *ptr = &p;
ptr->x = 10;
ptr->y = 20;
printf("x = %d y = %d\n", ptr->x, ptr->y);
return 0;
}
使⽤⽅式:结构体指针->成员名
综合举例:
#include <stdio.h>
#include <string.h>
struct Stu
{
char name[15];//名字
int age; //年龄
};
void print_stu(struct Stu s)
{
printf("%s %d\n", s.name, s.age);
}
void set_stu(struct Stu* ps)
{
strcpy(ps->name, "李四");
ps->age = 28;
}
int main()
{
struct Stu s = { "张三", 20 };
print_stu(s);
set_stu(&s);
print_stu(s);
return 0;
}
5.操作符的属性:优先级、结合性
C语⾔的操作符有2个重要的属性:优先级、结合性,这两个属性决定了表达式求值的计算顺序。
5.1 优先级
优先级指的是,如果⼀个表达式包含多个运算符,哪个运算符应该优先执⾏。各种运算符的优先级是 不⼀样的。
3 + 4 * 5;
上⾯⽰例中,表达式 3 + 4 * 5 ⾥⾯既有加法运算符( + ),⼜有乘法运算符( * )。由于乘法 的优先级⾼于加法,所以会先计算 4 * 5 ,⽽不是先计算 3 + 4 。
5.2 结合性
如果两个运算符优先级相同,优先级没办法确定先计算哪个了,这时候就看结合性了,则根据运算符 是左结合,还是右结合,决定执⾏顺序。⼤部分运算符是左结合(从左到右执⾏),少数运算符是右 结合(从右到左执⾏),⽐如赋值运算符( = )。
5 * 6 / 2;
上⾯⽰例中, * 和 / 的优先级相同,它们都是左结合运算符,所以从左到右执⾏,先计算 5 * 6 , 再计算 / 2 。 运算符的优先级顺序很多,下⾯是部分运算符的优先级顺序(按照优先级从⾼到低排列),建议⼤概 记住这些操作符的优先级就⾏,其他操作符在使⽤的时候查看下⾯表格就可以了。
• 圆括号( () )
• ⾃增运算符( ++ ),⾃减运算符( – )
• 单⽬运算符( + 和 - )
• 乘法( * ),除法( / ) • 加法( + ),减法( - )
• 关系运算符( < 、 > 等)
• 赋值运算符( = )
由于圆括号的优先级最⾼,可以使⽤它改变其他运算符的优先级
6.表达式求值
6.1 整型提升
C语⾔中整型算术运算总是⾄少以缺省(默认)整型类型的精度来进⾏的。 为了获得这个精度,表达式中的字符和短整型操作数在使⽤之前被转换为普通整型,这种转换称为整 型提升。
整型提升的意义: 表达式的整型运算要在CPU的相应运算器件内执⾏,CPU内整型运算器(ALU)的操作数的字节⻓度⼀ 般就是int的字节⻓度,同时也是CPU的通⽤寄存器的⻓度。 因此,即使两个char类型的相加,在CPU执⾏时实际上也要先转换为CPU内整型操作数的标准⻓ 度。 通⽤CPU(general-purposeCPU)是难以直接实现两个8⽐特字节直接相加运算(虽然机器指令中 可能有这种字节相加指令)。所以,表达式中各种⻓度可能⼩于int⻓度的整型值,都必须先转换为 int或unsignedint,然后才能送⼊CPU去执⾏运算。
//实例1
char a,b,c;
...
a = b + c;
b和c的值被提升为普通整型,然后再执⾏加法运算。 加法运算完成之后,结果将被截断,然后再存储于a中。
如何进⾏整体提升呢?
- 有符号整数提升是按照变量的数据类型的符号位来提升的
- ⽆符号整数提升,⾼位补0
//负数的整型提升
char c1 = -1;
变量c1的⼆进制位(补码)中只有8个⽐特位:
1111111
因为 char 为有符号的 char
所以整型提升的时候,⾼位补充符号位,即为1
提升之后的结果是:
11111111111111111111111111111111
//正数的整型提升
char c2 = 1;
变量c2的⼆进制位(补码)中只有8个⽐特位:00000001
因为 char 为有符号的 char
所以整型提升的时候,⾼位补充符号位,即为0
提升之后的结果是:
00000000000000000000000000000001
//⽆符号整型提升,⾼位补0
6.2 算术转换
如果某个操作符的各个操作数属于不同的类型,那么除⾮其中⼀个操作数的转换为另⼀个操作数的类 型,否则操作就⽆法进⾏。下⾯的层次体系称为寻常算术转换。
long double
double
float
unsigned long int
long int
unsigned int
int
如果某个操作数的类型在上⾯这个列表中排名靠后,那么⾸先要转换为另外⼀个操作数的类型后执⾏ 运算。
6.3 问题表达式解析
6.3.1 表达式1
//表达式的求值部分由操作符的优先级决定。
//表达式1
a * b + c * d + e * f
表达式1在计算的时候,由于 * ⽐ + 的优先级⾼,只能保证, * 的计算是⽐ + 早,但是优先级并不 能决定第三个 * ⽐第⼀个 + 早执⾏。 所以表达式的计算机顺序就可能是:
a*b
c*d
a*b + c*d
e*f
a*b + c*d + e*f
或者
a*b
c*d
e*f
a*b + c*d
a*b + c*d + e*f
6.3.2 表达式2
//表达式2
c + --c;
同上,操作符的优先级只能决定⾃减 – 的运算在 + 的运算的前⾯,但是我们并没有办法得知, + 操 作符的左操作数的获取在右操作数之前还是之后求值,所以结果是不可预测的,是有歧义的。
6.3.3 表达式3
//表达式3
int main()
{
int i = 10;
i = i-- - --i * ( i = -3 ) * i++ + ++i;
printf("i = %d\n", i);
return 0;
}
表达式3在不同编译器中测试结果:⾮法表达式程序的结果
6.3.4表达式4
include <stdio.h>
int fun()
{
static int count = 1;
return ++count;
}
int main()
{
int answer;
answer = fun() - fun() * fun();
printf( "%d\n", answer);//输出多少?
return 0;
}
这个代码有没有实际的问题?有问题! 虽然在⼤多数的编译器上求得结果都是相同的。 但是上述代码 answer = fun() - fun() * fun(); 中我们只能通过操作符的优先级得知:先 算乘法,再算减法。 函数的调⽤先后顺序⽆法通过操作符的优先级确定。
6.3.5 表达式5
//表达式5
#include <stdio.h>
int main()
{
int i = 1;
int ret = (++i) + (++i) + (++i);
printf("%d\n", ret);
printf("%d\n", i);
return 0;
}
//尝试在linux 环境gcc编译器,VS2013环境下都执⾏,看结果。
gcc编译器执⾏结果:
VS2022运⾏结果:
看看同样的代码产⽣了不同的结果,这是为什么? 简单看⼀下汇编代码,就可以分析清楚. 这段代码中的第⼀个 + 在执⾏的时候,第三个++是否执⾏,这个是不确定的,因为依靠操作符的优先 级和结合性是⽆法决定第⼀个 + 和第三个前置 ++ 的先后顺序。
6.4 总结
即使有了操作符的优先级和结合性,我们写出的表达式依然有可能不能通过操作符的属性确定唯⼀的 计算路径,那这个表达式就是存在潜在⻛险的,建议不要写出特别复杂的表达式。
- 点赞
- 收藏
- 关注作者
评论(0)