Java进阶(五十七)-基于感知哈希算法的pHash图像配准算法

举报
SHQ5785 发表于 2020/12/30 00:01:23 2020/12/30
【摘要】 #Java进阶(五十七)-基于感知哈希算法的pHash图像配准算法   毕业论文提交之后,老师交给自己一项任务:图像配准,也就是给你两幅图像,通过系统来判定两幅图像是否为同一副图像。自己作为这一方面的小白,先去网上搜索一下相应的检测方法,当然有现成的API调用最好,花钱也无所谓。   我们这里采用的基础关键技术叫做 “感知哈希算法”(Perceptual hash al...

#Java进阶(五十七)-基于感知哈希算法的pHash图像配准算法
  毕业论文提交之后,老师交给自己一项任务:图像配准,也就是给你两幅图像,通过系统来判定两幅图像是否为同一副图像。自己作为这一方面的小白,先去网上搜索一下相应的检测方法,当然有现成的API调用最好,花钱也无所谓。
  我们这里采用的基础关键技术叫做 “感知哈希算法”(Perceptual hash algorithm),它的作用是对每张图片生成一个"指纹"(fingerprint)字符串,然后比较不同图片的指纹。结果越接近,就说明图片越相似。
##感知哈希算法
  下面是一个最简单的实现:
###第一步,缩小尺寸。
  将图片缩小到8x8的尺寸,总共64个像素。这一步的作用是去除图片的细节,只保留结构、明暗等基本信息,摒弃不同尺寸、比例带来的图片差异。
###第二步,简化色彩。
  将缩小后的图片,转为64级灰度。也就是说,所有像素点总共只有64种颜色。
###第三步,计算平均值。
  计算所有64个像素的灰度平均值。
###第四步,比较像素的灰度。
  将每个像素的灰度,与平均值进行比较。大于或等于平均值,记为1;小于平均值,记为0。
###第五步,计算哈希值。
  将上一步的比较结果,组合在一起,就构成了一个64位的整数,这就是这张图片的指纹。组合的次序并不重要,只要保证所有图片都采用同样次序就行了。
  得到指纹以后,就可以对比不同的图片,看看64位中有多少位是不一样的。在理论上,这等同于计算"汉明距离"(Hamming distance)。如果不相同的数据位不超过5,就说明两张图片很相似;如果大于10,就说明这是两张不同的图片。
  具体的代码实现,可以参见Wote用Python语言写的imgHash.py。代码很短,只有53行。使用的时候,第一个参数是基准图片,第二个参数是用来比较的其他图片所在的目录,返回结果是两张图片之间不相同的数据位数量(汉明距离)。
  这种算法的优点是简单快速,不受图片大小缩放的影响,缺点是图片的内容不能变更。如果在图片上加几个文字,它就认不出来了。所以,它的最佳用途是根据缩略图,找出原图。
  实际应用中,往往采用更强大的pHash算法和SIFT算法,它们能够识别图片的变形。只要变形程度不超过25%,它们就能匹配原图。这些算法虽然更复杂,但是原理与上面的简便算法是一样的,就是先将图片转化成Hash字符串,然后再进行比较。
  均值哈希虽然简单,但受均值的影响非常大。例如对图像进行伽马校正或直方图均衡就会影响均值,从而影响最终的hash值。存在一个更健壮的算法叫pHash。它将均值的方法发挥到极致。使用离散余弦变换(DCT)来获取图片的低频成分。
  离散余弦变换(DCT)是种图像压缩算法,它将图像从像素域变换到频率域。然后一般图像都存在很多冗余和相关性的,所以转换到频率域之后,只有很少的一部分频率分量的系数才不为0,大部分系数都为0(或者说接近于0)。
##pHash
  pHash的工作过程如下:

  • (1)缩小尺寸:pHash以小图片开始,但图片大于88,3232是最好的。这样做的目的是简化了DCT的计算,而不是减小频率。
  • (2)简化色彩:将图片转化成灰度图像,进一步简化计算量。
  • (3)计算DCT:计算图片的DCT变换,得到32*32的DCT系数矩阵。
  • (4)缩小DCT:虽然DCT的结果是3232大小的矩阵,但我们只要保留左上角的88的矩阵,这部分呈现了图片中的最低频率。
  • (5)计算平均值:如同均值哈希一样,计算DCT的均值。
  • (6)计算hash值:这是最主要的一步,根据8*8的DCT矩阵,设置0或1的64位的hash值,大于等于DCT均值的设为”1”,小于DCT均值的设为“0”。组合在一起,就构成了一个64位的整数,这就是这张图片的指纹。

  结果并不能告诉我们真实性的低频率,只能粗略地告诉我们相对于平均值频率的相对比例。只要图片的整体结构保持不变,hash结果值就不变。能够避免伽马校正或颜色直方图被调整带来的影响。
  与均值哈希一样,pHash同样可以用汉明距离来进行比较。(只需要比较每一位对应的位置并算计不同的位的个数)
  下面我们来看下上述理论用Java来做一个DEMO版的具体实现:

import java.awt.Graphics2D;
import java.awt.color.ColorSpace;
import java.awt.image.BufferedImage;
import java.awt.image.ColorConvertOp;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.InputStream;

import javax.imageio.ImageIO;
/*
* function: 用汉明距离进行图片相似度检测的Java实现
* pHash-like image hash.
* Author: Sun Huaqiang
* Based On: http://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html
*/
public class ImagePHash { private int size = 32; private int smallerSize = 8; public ImagePHash() { initCoefficients(); } private ImagePHash(int size, int smallerSize) { this.size = size; this.smallerSize = smallerSize; initCoefficients(); } private int distance(String s1, String s2) { int counter = 0; for (int k = 0; k < s1.length();k++) { if(s1.charAt(k) != s2.charAt(k)) { counter++; } } return counter; } // Returns a 'binary string' (like. 001010111011100010) which is easy to do a hamming distance on. private String getHash(InputStream is) throws Exception { BufferedImage img = ImageIO.read(is);

/* 1. Reduce size(缩小尺寸).
Like Average Hash, pHash starts with a small image.
However, the image is larger than 8x8; 32x32 is a good size.This is really done to simplify the DCT computation and not because it is needed to reduce the high frequencies.
*/ img = resize(img, size, size);

/* 2. Reduce color(简化色彩).
The image is reduced to a grayscale just to further simplify the number of computations.
*/ img = grayscale(img); double[][] vals = new double[size][size]; for (int x = 0; x < img.getWidth(); x++) { for (int y = 0; y < img.getHeight(); y++) { vals[x][y] = getBlue(img, x, y); } }

/* 3. Compute the DCT(计算DCT).
The DCT(Discrete Cosine Transform,离散余弦转换) separates the image into a collection of frequencies and scalars. While JPEG uses an 8x8 DCT, this algorithm uses a 32x32 DCT.
*/ long start = System.currentTimeMillis(); double[][] dctVals = applyDCT(vals);
// System.out.println("DCT_COST_TIME: " + (System.currentTimeMillis() - start));

/* 4. Reduce the DCT.
This is the magic step. While the DCT is 32x32, just keep the top-left 8x8. Those represent the lowest frequencies in the picture.
*/
/* 5. Compute the average value.
Like the Average Hash, compute the mean DCT value (using only the 8x8 DCT low-frequency values and excluding the first term since the DC coefficient can be significantly different from the other values and will throw off the average).
*/ double total = 0; for (int x = 0; x < smallerSize; x++) { for (int y = 0; y < smallerSize; y++) { total += dctVals[x][y]; } } total -= dctVals[0][0]; double avg = total / (double) ((smallerSize * smallerSize) - 1);

/* 6. Further reduce the DCT.
This is the magic step. Set the 64 hash bits to 0 or 1
depending on whether each of the 64 DCT values is above or below the average value. The result doesn't tell us the
actual low frequencies; it just tells us the very-rough
relative scale of the frequencies to the mean. The result
will not vary as long as the overall structure of the image remains the same; this can survive gamma and color histogram adjustments without a problem.
*/ String hash = ""; for (int x = 0; x < smallerSize; x++) { for (int y = 0; y < smallerSize; y++) { if (x != 0 && y != 0) { hash += (dctVals[x][y] > avg?"1":"0"); } } } return hash; } private BufferedImage resize(BufferedImage image, int width, int height) { BufferedImage resizedImage = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB); Graphics2D g = resizedImage.createGraphics(); g.drawImage(image, 0, 0, width, height, null); g.dispose(); return resizedImage; } private ColorConvertOp colorConvert = new ColorConvertOp(ColorSpace.getInstance(ColorSpace.CS_GRAY), null); private BufferedImage grayscale(BufferedImage img) { colorConvert.filter(img, img); return img; } private static int getBlue(BufferedImage img, int x, int y) { return (img.getRGB(x, y)) & 0xff; }

// DCT function stolen from http://stackoverflow.com/questions/4240490/problems-with-dct-and-idct-algorithm-in-java private double[] c; private void initCoefficients() { c = new double[size]; for (int i=1;i<size;i++) { c[i]=1; } c[0]=1/Math.sqrt(2.0); } private double[][] applyDCT(double[][] f) { int N = size; double[][] F = new double[N][N]; for (int u=0;u<N;u++) { for (int v=0;v<N;v++) { double sum = 0.0; for (int i=0;i<N;i++) { for (int j=0;j<N;j++) { sum+=Math.cos(((2*i+1)/(2.0*N))*u*Math.PI)*Math.cos(((2*j+1)/(2.0*N))*v*Math.PI)*(f[i][j]); } } sum*=((c[u]*c[v])/4.0); F[u][v] = sum; } } return F; } /** * * @param img1 * @param img2 * @param tv * @return boolean */ public boolean imgChk(String img1, String img2, int tv){ ImagePHash p = new ImagePHash(); String image1; String image2; try { image1 = p.getHash(new FileInputStream(new File(img1))); image2 = p.getHash(new FileInputStream(new File(img2))); int dt = p.distance(image1, image2); System.out.println("["+img1 + "] : [" + img2 + "] Score is " + dt); if (dt <= tv) return true; } catch (FileNotFoundException e) { e.printStackTrace(); } catch (Exception e) { e.printStackTrace(); } return false; } public static void main(String[] args) { ImagePHash p = new ImagePHash(); String imagePath = "C:/Users/SHQ/Desktop/image/"; System.out.println(p.imgChk(imagePath+"1.jpg", imagePath+"2.jpg", 10)); System.out.println(p.imgChk(imagePath+"1.jpg", imagePath+"3.jpg", 10)); System.out.println(p.imgChk(imagePath+"1.jpg", imagePath+"4.jpg", 10)); System.out.println(p.imgChk(imagePath+"1.jpg", imagePath+"5.jpg", 10)); System.out.println(p.imgChk(imagePath+"1.jpg", imagePath+"6.png", 10)); System.out.println(p.imgChk(imagePath+"1.jpg", imagePath+"7.jpg", 10)); System.out.println(p.imgChk(imagePath+"2.jpg", imagePath+"3.jpg", 10)); }
}

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200

##测试结果
这里写图片描述
  结果说明:汉明距离越大表明图片差异越大,如果不相同的数据位不超过5,就说明两张图片很相似;如果大于10,就说明这是两张不同的图片。从结果可以看到1、5、6、7是相似图片,1、2、3差异太大,是两张不同的图片。
##附 测试图片
图1 1.jpg
这里写图片描述
图2 2.jpg
这里写图片描述
图3 3.jpg
这里写图片描述
图4 4.jpg
这里写图片描述
图5 5.png
这里写图片描述
图6 6.jpg(图1的缩略图)
这里写图片描述
图7 7.jpg(图1的缩略图)
这里写图片描述

![这里写图片描述](https://img-blog.csdnimg.cn/img_convert/f9c024e20306fb0e4e3e84a15aab3217.png)

文章来源: shq5785.blog.csdn.net,作者:No Silver Bullet,版权归原作者所有,如需转载,请联系作者。

原文链接:shq5785.blog.csdn.net/article/details/70232679

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。