数据分析高级教程(二)
6 模块开发——ETL
该项目的数据分析过程在hadoop集群上实现,主要应用hive数据仓库工具,因此,采集并经过预处理后的数据,需要加载到hive数据仓库中,以进行后续的挖掘分析。
6.1创建原始数据表
--在hive仓库中建贴源数据表
drop table if exists ods_weblog_origin; create table ods_weblog_origin( valid string, remote_addr string, remote_user string, time_local string, request string, status string, body_bytes_sent string, http_referer string, http_user_agent string) partitioned by (datestr string) row format delimited fields terminated by '\001'; |
点击流模型pageviews表
drop table if exists ods_click_pageviews; create table ods_click_pageviews( Session string, remote_addr string, time_local string, request string, visit_step string, page_staylong string, http_referer string, http_user_agent string, body_bytes_sent string, status string) partitioned by (datestr string) row format delimited fields terminated by '\001'; |
时间维表创建
drop table dim_time if exists ods_click_pageviews; create table dim_time( year string, month string, day string, hour string) row format delimited fields terminated by ','; |
6.2导入数据
导入清洗结果数据到贴源数据表ods_weblog_origin load data inpath '/weblog/preprocessed/16-02-24-16/' overwrite into table ods_weblog_origin partition(datestr='2013-09-18');
0: jdbc:hive2://localhost:10000> show partitions ods_weblog_origin; +-------------------+--+ | partition | +-------------------+--+ | timestr=20151203 | +-------------------+--+
0: jdbc:hive2://localhost:10000> select count(*) from ods_origin_weblog; +--------+--+ | _c0 | +--------+--+ | 11347 | +--------+--+
导入点击流模型pageviews数据到ods_click_pageviews表 0: jdbc:hive2://hdp-node-01:10000> load data inpath '/weblog/clickstream/pageviews' overwrite into table ods_click_pageviews partition(datestr='2013-09-18');
0: jdbc:hive2://hdp-node-01:10000> select count(1) from ods_click_pageviews; +------+--+ | _c0 | +------+--+ | 66 | +------+--+
导入点击流模型visit数据到ods_click_visit表
|
6.3 生成ODS层明细宽表
6.3.1 需求概述
整个数据分析的过程是按照数据仓库的层次分层进行的,总体来说,是从ODS原始数据中整理出一些中间表(比如,为后续分析方便,将原始数据中的时间、url等非结构化数据作结构化抽取,将各种字段信息进行细化,形成明细表),然后再在中间表的基础之上统计出各种指标数据
6.3.2 ETL实现
建表——明细表 (源:ods_weblog_origin) (目标:ods_weblog_detail)
drop table ods_weblog_detail; create table ods_weblog_detail( valid string, --有效标识 remote_addr string, --来源IP remote_user string, --用户标识 time_local string, --访问完整时间 daystr string, --访问日期 timestr string, --访问时间 month string, --访问月 day string, --访问日 hour string, --访问时 request string, --请求的url status string, --响应码 body_bytes_sent string, --传输字节数 http_referer string, --来源url[dht1] ref_host string, --来源的host ref_path string, --来源的路径 ref_query string, --来源参数query ref_query_id string, --来源参数query的值 http_user_agent string --客户终端标识 ) partitioned by(datestr string); |
--抽取refer_url到中间表 "t_ods_tmp_referurl"
--将来访url分离出host path query query id
drop table if exists t_ods_tmp_referurl; create table t_ ods _tmp_referurl as SELECT a.*,b.* FROM ods_origin_weblog a LATERAL VIEW parse_url_tuple(regexp_replace(http_referer, "\"", ""), 'HOST', 'PATH','QUERY', 'QUERY:id') b as host, path, query, query_id; |
--抽取转换time_local字段到中间表明细表”t_ ods _detail”
drop table if exists t_ods_tmp_detail; create table t_ods_tmp_detail as select b.*,substring(time_local,0,10) as daystr, substring(time_local,11) as tmstr, substring(time_local,5,2) as month, substring(time_local,8,2) as day, substring(time_local,11,2) as hour From t_ ods _tmp_referurl b; |
以上语句可以改写成:
insert into table zs.ods_weblog_detail partition(datestr='$day_01') select c.valid,c.remote_addr,c.remote_user,c.time_local, substring(c.time_local,0,10) as daystr, substring(c.time_local,12) as tmstr, substring(c.time_local,6,2) as month, substring(c.time_local,9,2) as day, substring(c.time_local,11,3) as hour, c.request,c.status,c.body_bytes_sent,c.http_referer,c.ref_host,c.ref_path,c.ref_query,c.ref_query_id,c.http_user_agent from (SELECT a.valid,a.remote_addr,a.remote_user,a.time_local, a.request,a.status,a.body_bytes_sent,a.http_referer,a.http_user_agent,b.ref_host,b.ref_path,b.ref_query,b.ref_query_id FROM zs.ods_weblog_origin a LATERAL VIEW parse_url_tuple(regexp_replace(http_referer, "\"", ""), 'HOST', 'PATH','QUERY', 'QUERY:id') b as ref_host, ref_path, ref_query, ref_query_id) c " 0: jdbc:hive2://localhost:10000> show partitions ods_weblog_detail; +---------------------+--+ | partition | +---------------------+--+ | dd=18%2FSep%2F2013 | +---------------------+--+ 1 row selected (0.134 seconds) |
http://www.baidu.com/aapath?sousuoci=’angel’
parse_url_tuple(url,’HOST’,’PATH’,’QUERY’,’QUERY:id’)
7 模块开发——统计分析
注:每一种统计指标都可以跟各维度表进行叉乘,从而得出各个维度的统计结果
篇幅限制,叉乘的代码及注释信息详见项目工程代码文件
为了在前端展示时速度更快,每一个指标都事先算出各维度结果存入mysql
提前准备好维表数据,在hive仓库中创建相应维表,如:
时间维表:
create table v_time(year string,month string,day string,hour string) row format delimited fields terminated by ',';
load data local inpath '/home/hadoop/v_time.txt' into table v_time; |
在实际生产中,究竟需要哪些统计指标通常由相关数据需求部门人员提出,而且会不断有新的统计需求产生,以下为网站流量分析中的一些典型指标示例。
1. PV统计
1.1 多维度统计PV总量
1. 时间维度
--计算指定的某个小时pvs select count(*),month,day,hour from dw_click.ods_weblog_detail group by month,day,hour;
--计算该处理批次(一天)中的各小时pvs drop table dw_pvs_hour; create table dw_pvs_hour(month string,day string,hour string,pvs bigint) partitioned by(datestr string);
insert into table dw_pvs_hour partition(datestr='2016-03-18') select a.month as month,a.day as day,a.hour as hour,count(1) as pvs from ods_weblog_detail a where a.datestr='2016-03-18' group by a.month,a.day,a.hour;
或者用时间维表关联
|
维度:日
drop table dw_pvs_day; create table dw_pvs_day(pvs bigint,month string,day string);
insert into table dw_pvs_day select count(1) as pvs,a.month as month,a.day as day from dim_time a join ods_weblog_detail b on b.dd='18/Sep/2013' and a.month=b.month and a.day=b.day group by a.month,a.day;
--或者,从之前算好的小时结果中统计 Insert into table dw_pvs_day Select sum(pvs) as pvs,month,day from dw_pvs_hour group by month,day having day='18';
结果如下: |
维度:月
drop table t_display_pv_month; create table t_display_pv_month (pvs bigint,month string); insert into table t_display_pv_month select count(*) as pvs,a.month from t_dim_time a join t_ods_detail_prt b on a.month=b.month group by a.month; |
2. 按终端维度统计pv总量
注:探索数据中的终端类型
select distinct(http_user_agent) from ods_weblog_detail where http_user_agent like '%Mozilla%' limit 200; |
终端维度:uc
drop table t_display_pv_terminal_uc; create table t_display_pv_ terminal_uc (pvs bigint,mm string,dd string,hh string); |
终端维度:chrome
drop table t_display_pv_terminal_chrome; create table t_display_pv_ terminal_ chrome (pvs bigint,mm string,dd string,hh string); |
终端维度:safari
drop table t_display_pv_terminal_safari; create table t_display_pv_ terminal_ safari (pvs bigint,mm string,dd string,hh string); |
3. 按栏目维度统计pv总量
栏目维度:job
栏目维度:news
栏目维度:bargin
栏目维度:lane
1.2 人均浏览页数
需求描述:比如,今日所有来访者,平均请求的页面数
--总页面请求数/去重总人数
drop table dw_avgpv_user_d; create table dw_avgpv_user_d( day string, avgpv string);
insert into table dw_avgpv_user_d select '2013-09-18',sum(b.pvs)/count(b.remote_addr) from (select remote_addr,count(1) as pvs from ods_weblog_detail where datestr='2013-09-18' group by remote_addr) b;
|
1.3 按referer维度统计pv总量
需求:按照来源及时间维度统计PVS,并按照PV大小倒序排序
-- 按照小时粒度统计,查询结果存入:( "dw_pvs_referer_h" )
drop table dw_pvs_referer_h; create table dw_pvs_referer_h(referer_url string,referer_host string,month string,day string,hour string,pv_referer_cnt bigint) partitioned by(datestr string);
insert into table dw_pvs_referer_h partition(datestr='2016-03-18') select http_referer,ref_host,month,day,hour,count(1) as pv_referer_cnt from ods_weblog_detail group by http_referer,ref_host,month,day,hour having ref_host is not null order by hour asc,day asc,month asc,pv_referer_cnt desc; |
按天粒度统计各来访域名的访问次数并排序
drop table dw_ref_host_visit_cnts_h; create table dw_ref_host_visit_cnts_h(ref_host string,month string,day string,hour string,ref_host_cnts bigint) partitioned by(datestr string);
insert into table dw_ref_host_visit_cnts_h partition(datestr='2016-03-18') select ref_host,month,day,hour,count(1) as ref_host_cnts from ods_weblog_detail group by ref_host,month,day,hour having ref_host is not null order by hour asc,day asc,month asc,ref_host_cnts desc; |
注:还可以按来源地域维度、访客终端维度等计算
1.4 统计pv总量最大的来源TOPN
需求描述:按照时间维度,比如,统计一天内产生最多pvs的来源topN
需要用到row_number函数
以下语句对每个小时内的来访host次数倒序排序标号,
selectref_host,ref_host_cnts,concat(month,hour,day),
row_number() over(partition by concat(month,hour,day) order by ref_host_cnts desc) as od
from dw_ref_host_visit_cnts_h
效果如下:
根据上述row_number的功能,可编写Hql取各小时的ref_host访问次数topn
drop table dw_pvs_refhost_topn_h; create table dw_pvs_refhost_topn_h( hour string, toporder string, ref_host string, ref_host_cnts string ) partitioned by(datestr string);
insert into table zs.dw_pvs_refhost_topn_h partition(datestr='2016-03-18') select t.hour,t.od,t.ref_host,t.ref_host_cnts from (select ref_host,ref_host_cnts,concat(month,day,hour) as hour, row_number() over (partition by concat(month,day,hour) order by ref_host_cnts desc) as od from zs.dw_ref_host_visit_cnts_h) t where od<=3; |
结果如下:
注:还可以按来源地域维度、访客终端维度等计算
2. 受访分析
统计每日最热门的页面top10
drop table dw_pvs_d; create table dw_pvs_d(day string,url string,pvs string);
insert into table dw_pvs_d select '2013-09-18',a.request,a.request_counts from (select request as request,count(request) as request_counts from ods_weblog_detail where datestr='2013-09-18' group by request having request is not null) a order by a.request_counts desc limit 10;
结果如下: |
注:还可继续得出各维度交叉结果
3. 访客分析
3.1 独立访客
需求描述:按照时间维度比如小时来统计独立访客及其产生的pvCnts
对于独立访客的识别,如果在原始日志中有用户标识,则根据用户标识即很好实现;
此处,由于原始日志中并没有用户标识,以访客IP来模拟,技术上是一样的,只是精确度相对较低
时间维度:时
drop table dw_user_dstc_ip_h; create table dw_user_dstc_ip_h( remote_addr string, pvs bigint, hour string);
insert into table dw_user_dstc_ip_h select remote_addr,count(1) as pvs,concat(month,day,hour) as hour from ods_weblog_detail Where datestr='2013-09-18' group by concat(month,day,hour),remote_addr; |
在此结果表之上,可以进一步统计出,每小时独立访客总数,每小时请求次数topn访客等
如每小时独立访客总数:
select count(1) as dstc_ip_cnts,hour from dw_user_dstc_ip_h group by hour; |
练习: 统计每小时请求次数topn的独立访客 |
时间维度:月
select remote_addr,count(1) as counts,month from ods_weblog_detail group by month,remote_addr; |
时间维度:日
select remote_addr,count(1) as counts,concat(month,day) as day from ods_weblog_detail Where dd='18/Sep/2013' group by concat(month,day),remote_addr; |
注:还可以按来源地域维度、访客终端维度等计算
3.2 每日新访客
需求描述:将每天的新访客统计出来
实现思路:创建一个去重访客累积表,然后将每日访客对比累积表
时间维度:日
--历日去重访客累积表 drop table dw_user_dsct_history; create table dw_user_dsct_history( day string, ip string ) partitioned by(datestr string);
--每日新用户追加到累计表 drop table dw_user_dsct_history; create table dw_user_dsct_history( day string, ip string ) partitioned by(datestr string);
--每日新用户追加到累计表 insert into table dw_user_dsct_history partition(datestr='2013-09-19') select tmp.day as day,tmp.today_addr as new_ip from ( select today.day as day,today.remote_addr as today_addr,old.ip as old_addr from (select distinct remote_addr as remote_addr,"2013-09-19" as day from ods_weblog_detail where datestr="2013-09-19") today left outer join dw_user_dsct_history old on today.remote_addr=old.ip ) tmp where tmp.old_addr is null; |
验证:
select count(distinct remote_addr) from ods_weblog_detail; -- 1005
select count(1) from dw_user_dsct_history where prtflag_day='18/Sep/2013'; --845
select count(1) from dw_user_dsct_history where prtflag_day='19/Sep/2013'; --160 |
时间维度:月
类似日粒度算法 |
注:还可以按来源地域维度、访客终端维度等计算
4. Visit分析(点击流模型)
4.2 回头/单次访客统计
需求描述:查询今日所有回头访客及其访问次数
实现思路:上表中出现次数>1的访客,即回头访客;反之,则为单次访客
drop table dw_user_returning; create table dw_user_returning( day string, remote_addr string, acc_cnt string) partitioned by (datestr string);
insert overwrite table dw_user_returning partition(datestr='2013-09-18')
select tmp.day,tmp.remote_addr,tmp.acc_cnt from (select '2013-09-18' as day,remote_addr,count(session) as acc_cnt from click_stream_visit group by remote_addr) tmp where tmp.acc_cnt>1; |
4.3 人均访问频次
需求:统计出每天所有用户访问网站的平均次数(visit)
总visit数/去重总用户数
select sum(pagevisits)/count(distinct remote_addr) from click_stream_visit partition(datestr='2013-09-18'); |
5. Visit分析另一种实现方式[dht1]
5.1 mr程序识别出访客的每次访问
a.) 首先开发MAPREDUCE程序:UserStayTime
注:代码略长,见项目工程代码
|
b.) 提交MAPREDUCE程序进行运算
[hadoop@hdp-node-01 ~]$ hadoop jar weblog.jar cn.itcast.bigdata.hive.mr.UserStayTime /weblog/input /weblog/stayout4 --导入hive表("t_display_access_info")中 drop table ods_access_info; create table ods_access_info(remote_addr string,firt_req_time string,last_req_time string,stay_long string) partitioned by(prtflag_day string) row format delimited fields terminated by '\t';
load data inpath '/weblog/stayout4' into table ods_access_info partition(prtflag_day='18/Sep/2013'); 创建表时stay_long使用的string类型,但是在后续过程中发现还是用bigint更好,进行表修改 alter table ods_access_info change column stay_long stay_long bigint; |
5.2 将mr结果导入访客访问信息表"t_display_access_info"
由于有一些访问记录是单条记录,mr程序处理处的结果给的时长是0,所以考虑给单次请求的停留时间一个默认市场30秒
drop table dw_access_info; create table dw_access_info(remote_addr string,firt_req_time string,last_req_time string,stay_long string) partitioned by(prtflag_day string);
insert into table dw_access_info partition(prtflag_day='19/Sep/2013') select remote_addr,firt_req_time,last_req_time, case stay_long when 0 then 30000 else stay_long end as stay_long from ods_access_info where prtflag_day='18/Sep/2013';
|
在访问信息表的基础之上,可以实现更多指标统计,如:
统计所有用户停留时间平均值,观察用户在站点停留时长的变化走势
select prtflag_day as dt,avg(stay_long) as avg_staylong
from dw_access_info group by prtflag_day;
5.3 回头/单次访客统计
注:从上一步骤得到的访问信息统计表“dw_access_info”中查询
--回头访客访问信息表 "dw_access_info_htip"
drop table dw_access_info_htip; create table dw_access_info_htip(remote_addr string, firt_req_time string, last_req_time string, stay_long string,acc_counts string) partitioned by(prtflag_day string);
insert into table dw_access_info_htip partition(prtflag_day='18/Sep/2013') select b.remote_addr,b.firt_req_time,b.last_req_time,b.stay_long,a.acc_counts from (select remote_addr,count(remote_addr) as acc_counts from dw_access_info where prtflag_day='18/Sep/2013' group by remote_addr having acc_counts>1) a join dw_access_info b on a.remote_addr = b.remote_addr; |
--单次访客访问信息表 "dw_access_info_dcip"
drop table dw_access_info_dcip; create table dw_access_info_dcip(remote_addr string, firt_req_time string, last_req_time string, stay_long string,acc_counts string) partitioned by(prtflag_day string);
insert into table dw_access_dcip partition(prtflag_day='18/Sep/2013') select b.remote_addr,b.firt_req_time,b.last_req_time,b.stay_long,a.acc_counts from (select remote_addr,count(remote_addr) as acc_counts from dw_access_info where prtflag_day='18/Sep/2013' group by remote_addr having acc_counts<2) a join dw_access_info b on a.remote_addr = b.remote_addr;
|
在回头/单词访客信息表的基础之上,可以实现更多统计指标,如:
--当日回头客占比
drop table dw_htpercent_d; create table dw_htpercent_d(day string,ht_percent float);
Insert into table dw_htpercent_d select '18/Sep/2013',(tmp_ht.ht/tmp_all.amount)*100 from (select count( distinct a.remote_addr) as ht from dw_access_info_htip a where prtflag_day='18/Sep/2013') tmp_ht Join (select count(distinct b.remote_addr) as amount from dw_access_info b where prtflag_day='18/Sep/2013') tmp_all;
|
5.4 人均访问频度
--总访问次数/去重总人数,从访客次数汇总表中查询
select avg(user_times.counts) as user_access_freq from (select remote_addr,counts from t_display_htip union all select remote_addr,counts from t_display_access_dcip) user_times;
--或直接从访问信息表 t_display_access_info 中查询 select avg(a.acc_cts) from (select remote_addr,count(*) as acc_cts from dw_access_info group by remote_addr) a; |
6.关键路径转化率分析——漏斗模型
转化:在一条指定的业务流程中,各个步骤的完成人数及相对上一个步骤的百分比
6.1 需求分析
6.2 模型设计
定义好业务流程中的页面标识,下例中的步骤为:
Step1、 /item%
Step2、 /category
Step3、 /order
Step4、 /index
6.3 开发实现
分步骤开发:
1、查询每一个步骤的总访问人数
create table route_numbs as select 'step1' as step,count(distinct remote_addr) as numbs from ods_click_pageviews where request like '/item%' union select 'step2' as step,count(distinct remote_addr) as numbs from ods_click_pageviews where request like '/category%' union select 'step3' as step,count(distinct remote_addr) as numbs from ods_click_pageviews where request like '/order%' union select 'step4' as step,count(distinct remote_addr) as numbs from ods_click_pageviews where request like '/index%'; |
2、查询每一步骤相对于路径起点人数的比例
思路:利用join
select rn.step as rnstep,rn.numbs as rnnumbs,rr.step as rrstep,rr.numbs as rrnumbs from route_num rn inner join route_num rr
|
select tmp.rnstep,tmp.rnnumbs/tmp.rrnumbs as ratio from ( select rn.step as rnstep,rn.numbs as rnnumbs,rr.step as rrstep,rr.numbs as rrnumbs from route_num rn inner join route_num rr) tmp where tmp.rrstep='step1'; |
3、查询每一步骤相对于上一步骤的漏出率
select tmp.rrstep as rrstep,tmp.rrnumbs/tmp.rnnumbs as ration from ( select rn.step as rnstep,rn.numbs as rnnumbs,rr.step as rrstep,rr.numbs as rrnumbs from route_num rn inner join route_num rr) tmp where cast(substr(tmp.rnstep,5,1) as int)=cast(substr(tmp.rrstep,5,1) as int)-1 |
4、汇总以上两种指标
select abs.step,abs.numbs,abs.ratio as abs_ratio,rel.ratio as rel_ratio from ( select tmp.rnstep as step,tmp.rnnumbs as numbs,tmp.rnnumbs/tmp.rrnumbs as ratio from ( select rn.step as rnstep,rn.numbs as rnnumbs,rr.step as rrstep,rr.numbs as rrnumbs from route_num rn inner join route_num rr) tmp where tmp.rrstep='step1' ) abs left outer join ( select tmp.rrstep as step,tmp.rrnumbs/tmp.rnnumbs as ratio from ( select rn.step as rnstep,rn.numbs as rnnumbs,rr.step as rrstep,rr.numbs as rrnumbs from route_num rn inner join route_num rr) tmp where cast(substr(tmp.rnstep,5,1) as int)=cast(substr(tmp.rrstep,5,1) as int)-1 ) rel on abs.step=rel.step
|
8 模块开发——结果导出
报表统计结果,由sqoop从hive表中导出,示例如下,详见工程代码
sqoop export \ --connect jdbc:mysql://hdp-node-01:3306/webdb --username root --password root \ --table click_stream_visit \ --export-dir /user/hive/warehouse/dw_click.db/click_stream_visit/datestr=2013-09-18 \ --input-fields-terminated-by '\001' |
9 模块开发——工作流调度
注:将整个项目的数据处理过程,从数据采集到数据分析,再到结果数据的导出,一系列的任务分割成若干个oozie的工作流,并用coordinator进行协调
工作流定义示例
Ooize配置片段示例,详见项目工程
1、日志预处理mr程序工作流定义
<workflow-app name="weblogpreprocess" xmlns="uri:oozie:workflow:0.4"> <start to="firstjob"/> <action name="firstjob"> <map-reduce> <job-tracker>${jobTracker}</job-tracker> <name-node>${nameNode}</name-node> <prepare> <delete path="${nameNode}/${outpath}"/> </prepare> <configuration> <property> <name>mapreduce.job.map.class</name> <value>cn.itcast.bigdata.hive.mr.WeblogPreProcess$WeblogPreProcessMapper</value> </property>
<property> <name>mapreduce.job.output.key.class</name> <value>org.apache.hadoop.io.Text</value> </property> <property> <name>mapreduce.job.output.value.class</name> <value>org.apache.hadoop.io.NullWritable</value> </property>
<property> <name>mapreduce.input.fileinputformat.inputdir</name> <value>${inpath}</value> </property> <property> <name>mapreduce.output.fileoutputformat.outputdir</name> <value>${outpath}</value> </property> <property> <name>mapred.mapper.new-api</name> <value>true</value> </property> <property> <name>mapred.reducer.new-api</name> <value>true</value> </property>
</configuration> </map-reduce> <ok to="end"/> <error to="kill"/> |
2、数据加载etl工作流定义:
<workflow-app xmlns="uri:oozie:workflow:0.5" name="hive2-wf"> <start to="hive2-node"/>
<action name="hive2-node"> <hive2 xmlns="uri:oozie:hive2-action:0.1"> <job-tracker>${jobTracker}</job-tracker> <name-node>${nameNode}</name-node> <configuration> <property> <name>mapred.job.queue.name</name> <value>${queueName}</value> </property> </configuration> <jdbc-url>jdbc:hive2://hdp-node-01:10000</jdbc-url> <script>script.q</script> <param>input=/weblog/outpre2</param> </hive2> <ok to="end"/> <error to="fail"/> </action>
<kill name="fail"> <message>Hive2 (Beeline) action failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message> </kill> <end name="end"/> </workflow-app> |
3、数据加载工作流所用hive脚本:
create database if not exists dw_weblog; use dw_weblog; drop table if exists t_orgin_weblog; create table t_orgin_weblog(valid string,remote_addr string, remote_user string, time_local string, request string, status string, body_bytes_sent string, http_referer string, http_user_agent string) row format delimited fields terminated by '\001'; load data inpath '/weblog/preout' overwrite into table t_orgin_weblog;
drop table if exists t_ods_detail_tmp_referurl; create table t_ods_detail_tmp_referurl as SELECT a.*,b.* FROM t_orgin_weblog a LATERAL VIEW parse_url_tuple(regexp_replace(http_referer, "\"", ""), 'HOST', 'PATH','QUERY', 'QUERY:id') b as host, path, query, query_id;
drop table if exists t_ods_detail; create table t_ods_detail as select b.*,substring(time_local,0,11) as daystr, substring(time_local,13) as tmstr, substring(time_local,4,3) as month, substring(time_local,0,2) as day, substring(time_local,13,2) as hour from t_ods_detail_tmp_referurl b;
drop table t_ods_detail_prt; create table t_ods_detail_prt( valid string, remote_addr string, remote_user string, time_local string, request string, status string, body_bytes_sent string, http_referer string, http_user_agent string, host string, path string, query string, query_id string, daystr string, tmstr string, month string, day string, hour string) partitioned by (mm string,dd string);
insert into table t_ods_detail_prt partition(mm='Sep',dd='18') select * from t_ods_detail where daystr='18/Sep/2013'; insert into table t_ods_detail_prt partition(mm='Sep',dd='19') select * from t_ods_detail where daystr='19/Sep/2013'; |
更多工作流及hql脚本定义详见项目工程
下节是单元测试,和可视化展示。
听说有气质的人都会关注这个公众号!
文章来源: blog.csdn.net,作者:敲代码的灰太狼,版权归原作者所有,如需转载,请联系作者。
原文链接:blog.csdn.net/tongtongjing1765/article/details/100581748
- 点赞
- 收藏
- 关注作者
评论(0)